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Abstract

A recognition model which defines a measure of shape similarity on the direct
output of multiscale and multiorientation Gabor filters does not manifest
qualitative aspects of human object recognition of contour-deleted images in
that: a) it recognizes recoverable and nonrecoverable contour-deleted images
equally well whereas humans recognize recoverable images much better, b) i t
distinguishes complementary feature-deleted images whereas humans do not.
Adding some of the known connectivity pattern of the primary visual cortex to
the model in the form of extension fields (connections between collinear and
curvilinear units)  among filters increased the overall recognition performance
of the model and:  a) boosted the recognition rate of the recoverable images far
more than the nonrecoverable ones, b) increased the similarity of
complementary feature-deleted images, but not part-deleted ones, more closely
corresponding to human psychophysical results.  Interestingly, performance
was approximately equivalent for narrow (±15û) and broad (±90û) extension
fields.  

1 Introduction

A task that both biological and artificial vision systems have to solve is to
recover boundaries of objects from many times imperfect, noisy input.  The Gestalt
grouping principles of co-curvilinearity, proximity, constancy of curvature can help
recovering meaningful information under these circumstances.  There is considerable
evidence from neuroscience [2] and psychophysics [3] that these grouping principles
are built into the mammalian visual system in the form of connectivity patterns
among processing units.  There is both anatomical and physiological evidence that
cells with approximately collinear orientation  are interconnected mainly by excitatory
connections [4].  Psychophysical results seem to suggest a broader field of
connections between not only collinear units, but also curvilinear ones [3].  For either
the narrow or the broad fields, the excitatory connections reveal smoothly decreasing
strength with increasing distance and curvature differences [3,11].  There is also
evidence for facilitation (increase in sensitivity for detecting Gabor patches) when local
and global orientations are 90 degrees offset (the virtual line connecting two segments
is perpendicular to their orientation) which is not modeled here [3,11].  The smoothly
decaying excitatory field around an oriented segment is referred to as an extension field
in this paper.  The terms 'association field' or 'stochastic completion field' can be
found in the literature to refer to similar constructs.  These terms are generally applied
to fields considered to manifest broad tuning.  The term 'horizontal connections' has
been employed to refer to the more narrowly tuned excitatory connections documented
for neural units. To compare the effects of both narrow (collinear) and broad (collinear
and curvilinear) connectivity patterns among processing units we decided to



implement  two versions of the extension field: a narrow and a broad one.  In the
absence of precise neurophysiological data for the strength of connections between
collinear and curvilinear units we choose the algorithmic definition of narrow and
broad extension fields to be an excitatory gradient +/-15 and +/-90 degrees
respectively centered on an oriented segment.

The goal of the present study was to investigate the consequences of adding
extension fields to a recognition model that computed shape similarity based on
representations of V1 hypercolumn activity.  Specifically, we studied whether the
extension fields would increase the resemblance of the recognition performance of the
model to that shown by humans.  

1.1 Brief comparison with previous work

Several previous computer vision models have used extension field type
algorithms to guide the grouping process [5,6,7,10,12,14].  The main contribution in
the present effort is the implementation of such a scheme on a biologically plausible
multiscale and multiorientation filter representation, roughly similar to that of a lattice
of V1 hypercolumns.  This representation allowed a measure of shape similarity based
on the combined activity produced by both the input image and the grouping process
(although this does not necessarily mean that grouping results in activity that is
indistinguishable from that produced by the original image).  The previously cited
efforts did not result in a measure of shape similarity.

Other differences distinguishing the present effort from prior ones was that the
latter studies used only one scale as opposed to our multiscale approach.  Since our
test images were line-drawings, only one scale size--chosen to be the width
(frequency) of the lines--could have very well been used, but a multiscale
representation better resembles the sampling properties of biological vision systems.
Many of the studies in the grouping literature [10,12] used  an iterative relaxation
algorithm as opposed to the more biologically plausible one-pass operation which
was implemented here.  An additional feature of the current study is that it directly
compared the recognition performance of a grouping model to that of humans on a
large number of test images, which is relatively rare in the literature. In the following
we will describe two experiments on object recognition and compare human data to
the performance of our baseline model.

1.2 Human experimental results and comparison of performance
with a baseline model

In a psychophysical experiment [1] equal amount of contour was deleted from
line drawings in such a way that the parts were either recoverable or nonrecoverable
as illustrated in Figure 1.  Subjects were able to recognize recoverable versions, but
not nonrecoverable ones. A model [9] based on the direct output of a number of
columns of multiscale and multiorientation Gabor filters (each column is roughly
analogous to the simple cells in a V1 hypercolumn) was tested on the same images.   
The model recognized the nonrecoverable images as well as the recoverable ones, a
result that does not correspond to human data (see results later).   

In another task, subjects named briefly presented contour-deleted images [2].
For each image, two sets of complementary pairs were created by deleting every other



vertex and edge from each simple part in the first set (feature-deleted) and by deleting
approximately half the components from each image in the second set (part-deleted)
(Figure 2).  If the members of the complementary feature-deleted pair or the part-
deleted pair were superimposed they would provide an intact image without any
overlap in contour.

Members of a complementary feature-deleted image pair (Figure 2. left) were
equivalent to each other for human subjects as tested with the priming paradigm [2],
but not for the model since the similarity of members of a pair was markedly lower
than similarity of one of the images from the pair to itself.  Part-deleted
complementary images (Figure 2. right) were not equivalent neither to humans nor to
the model.

Figure 1. Examples of intact (left), recoverable (middle) and nonrecoverable (right) test
images [1].

2 Additions to the baseline model

The extension field is essentially a probability directional vector-field
describing the contribution of a single unit-length edge element to its neighborhood
in terms of direction and strength [6].  In other words, it describes the preferred
direction and the probability of existence of every point in space to share a curve with
the original segment.  The field direction at a given point in space is chosen to be
tangent to the osculating circle passing through the edge element and that point,
while its strength is proportional to the radius of that circle (Figure 3.).  Also, the
strength decays with distance from the origin (the edge segment).  The decay of
extension field strength is set to be Gaussian for both the proximity and curvature
constraints:



            

Figure 2. Examples of feature-deleted complementary image pairs (left) and part-
deleted complementary image pairs (right). Each member contains approximately half
the parts of the object.

EF(x,ρ) = e− Ax 2

e− Bρ 2

                    (1)

where x  is the distance along the circular arc and ρ  is the curvature of the given arc.
Recently,  Williams and Jacobs [13] described a very similar type of prior probability
distribution of boundary completion based on computing the probability that a
particle following a random walk will pass through a given position and orientation
on a path joining two edge segments.

From each end of an edge segment, an extension field expanded to define a
triangular area as shown in Fig. 4.  The maximum orientation difference spanned by
the broad extension field was ±90û, which were at the ±45û boundaries of the extension
field (Figure 4).  Beyond those values, the Gaussians for orientation were set to zero
so the broad extension fields had zero values above and below the main diagonals, as
illustrated in Fig. 4.  The narrow extension field is a subset of the broad extension
field in that it uses the same direction and strength fields except that the excitation
area is limited to ±15û orientation difference.  The absence of grouping activity in the
regions outside of the extension field merely means that additional information is
needed to reconstruct curves between such pairs.

The extension fields were incorporated into the baseline model by allowing a
field to operate on each of the 24 activation fields created by convolving the 24 kernels
with an image.  Because there were 8 orientations for the activation fields there were
also 8 orientations for the extension fields. The additional excitation as provided by
the extension field was distributed to the activation fields in such a manner that only
the corresponding orientations of the activation fields and extension fields were
convolved:
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Figure 3.  Field direction for every point in space is chosen to be the tangent to the
osculating circle passing through the edge segment and the given point.

 

Figure 4.  The brightness coded directional map of the broad extension fields given a
horizontal edge element in the middle.  Within the butterfly shaped extension fields,
black refers to horizontal and white to vertical orientations (left).  The strength map of
the extension field for locations and directions shown in the left figure.  Strength
declines with increasing orientation differences and distance from the edge element.
There is no strength assigned above and below the diagonals (right).

where   
r
l  gives the orientation of both the extension and activation fields.  For the

broad extension field model the activation fields not only get excitation from the
extension field with the same orientation, but also from all the other orientations. For
computational ease the excitation fields were divided into 8 subregions based on
orientation and only the corresponding range of orientations were applied to an
activation field with a given orientation.  For the broad extension field model the
overall excitation applied to an activation field is then given by summing up the



excitation coming from: (a) the extension field with the preferred orientation of the
given activation field and (b) the excitation from all the other extension fields.  In the
narrow extension field model the activation field with a given orientation was only
convolved with the excitation field having the same orientation.  

To anticipate a point that will be made in the Discussion, the grouping
activity can be distinguished from the activity produced directly by the image by
keeping a reference copy of the early filter activations without any connectivity.      

Figure 5 shows the activation fields created by convolving an image with the
differently oriented and scaled kernels (altogether 24 kernels were used) and with the
narrowly tuned extension field (again the 'boat' recoverable images is used as an
example).  In the visual representation the activation values of the model are
normalized to integer values between 0-255 for 8-bit graphical display.

Figure 5. Activation fields produced by narrowly tuned extension fields for the
recoverable 'boat' image (the model with broad extension fields gave similar results).
The three rows represent the three scale sizes used in the experiment. The first column
shows the 2D picture of the Gabor kernels at the three different scales.  From the
second to the second to last column the normalized activations of the differently
oriented kernels to the recoverable 'boat' image are displayed starting with horizontal
orientation and incrementing by 22.5 degrees. The last column shows the normalized
cumulative activation of the three different scales at all orientations.

  Figure 6 provides a direct visual comparison of the workings of the three
different model types. The top row displays three versions of the 'boat' image from the
set: intact, recoverable and nonrecoverable in left, middle and right columns
respectively. Below the 3 x 9 blocks of images show the cumulative activation
patterns induced by the three images in the three examined models: baseline, with
narrowly tuned extension fields, with broadly tuned extension fields (from top nine
image to bottom nine).  In each of the three nine image blocks the first row represents
the cumulative activation patterns of the kernels at the highest scale and at all 8
orientations. The second row represents the cumulative response at the highest and
medium scale and the last row shows the 'total' of the activation for all scales and all
orientations as well (similarly to the last column of Figure 5). This visualization of
model activation also shows that for the second and third block of nine images (model
with narrow and broad extension fields) the activation patterns for intact and
recoverable images are much more similar than for the baseline model (first block of
nine images).



3 Simulations

In the recoverable-nonrecoverable experiment the similarity of 36 intact
images with the recoverable and nonrecoverable versions (altogether 108 images) was
calculated and compared to each other.

In the feature-deleted vs. part-deleted experiment the similarity of the feature-
deleted complementary image pair was compared to the similarity of the part deleted
complementary image pair for 18 images (altogether 72 used).

3.1 Result of the simulations

The results of the simulations are displayed on Figures 7 and 8.  The
addition of narrowly tuned extension fields between similarly oriented kernels
increased the similarity of both the recoverable and nonrecoverable versions to the
original intact image, although it increased the similarity of the recoverable version
more.  Whereas for the baseline model there was no difference between the similarity
of recoverable and nonrecoverable images t(35) = .64, p = .52 the addition of narrow
extension fields significantly increased the difference between the similarity of
recoverable and nonrecoverable types compared with the original images t(35) = 4.8,
p < .001. The addition of broad extension fields further improved similarity for
recoverable images, but did not improve similarity for the nonrecoverable ones
compared to the narrow extension fields. Consequently, the broad extension field
model further increased the difference between the similarity of recoverable and
nonrecoverable images compared with the intact versions t(35) = 9.09, p < .001.

The addition of narrow and broad extension fields significantly increased the
similarity of feature-deleted complementary images pairs, but did not improve the
similarity of the part-deleted pairs. The similarity of two complementary feature-
deleted images was already significantly higher than of two complementary part-
deleted ones t(17) = 3.04, p < .01, but the addition of horizontal connections further
improved this difference t(17) = 8.54, p < .001, just as did the addition of extension
fields t(17) = 9.12, p < .001.  The fact that similarity did not improve for part-deleted
image pairs was expected considering that there was no any global knowledge
provided that could relate the two different part structures in the pair to each other.
However, the significant increase of similarity for the feature-deleted pairs was not an
obvious outcome of the simulation.  The addition of the broad extension field did not
improve similarity for feature-deleted images compared to the narrow extension fields,
which might be due to the large number of man-made objects in the stimuli set with
mostly straight contours.

Figure 6 (next page). The top row displays the intact, recoverable and nonrecoverable
versions of an image respectively.  The 3 x 9 block of images below the top row
display the activation patterns of the three model types (Baseline, Narrow Extension
Fields, and Broad Extension Fields) to these images.  The first row in each three
blocks represents the cumulative activation of the highest frequency kernels at all eight
orientations to the three images. The second row in each three blocks shows the
cumulative activation of the highest and medium frequency kernels at all orientations.
Finally, the third row in each blocks represents the cumulative activation of all three
kernel sizes at all orientations (all 24 kernels).
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Figure 7. Average similarity values for matching the original intact images with the
recoverable and nonrecoverable versions in the three model types.
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Figure 8. Average similarity values for matching complementary feature-deleted pairs
and complementary part-deleted pairs in the three model types.

4 Conclusions

The addition of extension fields to a baseline model of object recognition
that operates on the output of multiscale and multiorientation Gabor filters improves
its overall recognition performance (at minimum for the given set of images) and
brings its performance significantly  and qualitatively closer to that of human object
recognition.

Interestingly, adding broad extension fields to the original model did not
improve its performance significantly beyond the improvement already achieved by
narrow extension fields.

An obvious direction for future development of the model is to incorporate
inhibition and endstopping into the connectivity pattern, both well known
characteristics of biological low level vision systems.  We might mention though that
even without these additions the model's performance could significantly be improved
just based on the addition of excitatory connections.
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