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Abstract The classification of a table as round rather
than square, a car as a Mazda rather than a Ford, a drill
bit as 3/8-inch rather than 1/4-inch, and a face as Tom
have all been regarded as a single process termed
“subordinate classification.” Despite the common label,
the considerable heterogeneity of the perceptual pro-
cessing required to achieve such classifications requires,
minimally, a more detailed taxonomy. Perceptual in-
formation relevant to subordinate-level shape classifi-
cations can be presumed to vary on continua of (a) the
type of distinctive information that is present, nonacci-
dental or metric, (b) the size of the relevant contours or
surfaces, and (c) the similarity of the to-be-discriminated
features, such as whether a straight contour has to be
distinguished from a contour of low curvature versus
high curvature. We consider three, relatively pure cases.
Case 1 subordinates may be distinguished by a repre-
sentation, a geon structural description (GSD), specify-
ing a nonaccidental characterization of an object’s large
parts and the relations among these parts, such as a
round table versus a square table. Case 2 subordinates
are also distinguished by GSDs, except that the dis-
tinctive GSDs are present at a small scale in a complex
object so the location and mapping of the GSDs are
contingent on an initial basic-level classification, such as
when we use a logo to distinguish various makes of cars.
Expertise for Cases 1 and 2 can be easily achieved
through specification, often verbal, of the GSDs. Case 3
subordinates, which have furnished much of the grist for
theorizing with ‘“‘view-based” template models, require
fine metric discriminations. Cases 1 and 2 account for
the overwhelming majority of shape-based basic- and
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subordinate-level object classifications that people can
and do make in their everyday lives. These classifications
are typically made quickly, accurately, and with only
modest costs of viewpoint changes. Whereas the acti-
vation of an array of multiscale, multiorientation filters,
presumed to be at the initial stage of all shape process-
ing, may suffice for determining the similarity of the
representations mediating recognition among Case 3
subordinate stimuli (and faces), Cases 1 and 2 require
that the output of these filters be mapped to classifiers
that make explicit the nonaccidental properties, parts,
and relations specified by the GSDs.

Introduction

In their seminal (1976) paper, Rosch, Mervis, Gray, and
Boyes-Braem argued that visual classifications are ini-
tially made at a ““basic” level. We can roughly think of the
basic level as that level of classification that people
spontaneously employ to name a picture of an object,
such as a ““chair” or an “‘elephant.” This is the level that
maximizes cue validity in that it represents the best
compromise in maximizing two quantities: (a) the dis-
tinctiveness between classes, and (b) the informativeness
within a class. For example, elephants are highly dis-
tinctive from other basic level entities such as dogs, mice,
tigers, and chairs. We also gain an enormous amount of
information knowing that something is an elephant and
not just an “animal.” We do obtain more information
from the subordinate classification in knowing that a
particular elephant is an Asian elephant rather than an
African elephant, but the modest amount of additional
information in the subordinate classification comes at a
considerable cost in distinctiveness: African elephants are
not particularly distinctive from Asian elephants. The
more abstract superordinate level, that of mammal (often
termed “‘animal’’), provides a high level of distinctiveness
in that mammals are generally highly distinctive from fish
or birds, but we lose greatly in informativeness in that we
do not know which particular mammal is being specified.
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The tradeoff between distinctiveness and informativeness
can be appreciated with consideration of the subordinate-
basic-superordinate level triples of Ford-car-vehicle or
copperhead-snake-vertebrate.

Although the representations mediating basic-level
classifications have been the subject of considerable
theorizing (e.g., Biederman, 1987; Murphy & Brownell,
1985; Murphy & Smith, 1982; Rosch et al., 1976; Tver-
sky & Hemenway, 1984), there has been little systematic
work in exploring the perceptual representations medi-
ating subordinate-level classifications, despite the im-
portance of such representations in achieving expertise
for the performance of many visual tasks, such as taking
inventory, recognizing a person by his or her face, fur-
niture shopping, bird watching, automobile identifica-
tion, and target identification.

In this article we present an analysis of the perceptual
requirements for basic- and subordinate-level visual
classification of objects on the basis of their shape.! The
analysis suggests that to a large extent, subordinate-level
object classifications employ the same type of shape in-
formation as that employed at a basic level: geon struc-
tural descriptions (GSDs) (defined below). This
information is typically, but not always, present at a
smaller scale when subordinate classifications are re-
quired. The (possibly) special case of face individuation
is considered separately. Prior to the analysis, we first
consider the ambiguity that has resulted in failing to
consider more thoroughly the perceptual basis for visual
classification. We then review the evidence for the rep-
resentations that we propose and suggest a neurocom-
putational basis for these representations.

Current status of subordinate-level classification

The literature on categorization posits only one level —
the subordinate — at a less abstract level than the basic
(or entry) level of classification. The employment of a
single, common term has perhaps obscured the great
variability in the perceptual demands required for dis-
tinguishing among different objects within a basic-level
class (Biederman & Gerhardstein, 1993; 1995; Tversky &
Hemenway, 1991). One consequence of the lack of dif-
ferentiation of subordinate-level classifications is that
investigators studying this domain have tended to
overgeneralize the implications of their results. For ex-
ample, the enormous difficulty and view dependence in
attempting to distinguish among a set of bent paper clips
is taken as characteristic of all subordinate-level classi-
fications (Poggio & Edelman, 1990). In addition, the
individuation of faces is often uncritically accepted as a
prototypical subordinate-level object classification task,
although there is some reason to believe, as will be

'Of course, visual information other than shape can be employed
for classifying objects, particularly at a subordinate level, such as
surface properties (e.g., color, texture, materials), position in a
scene, and movement characteristics.

argued later, that the identification of faces and the
subordinate-level classification of objects may be medi-
ated by different kinds of representations (e.g., Baylis,
Rolls, & Leonard, 1987; Biederman & Kalocsai, 1997;
Moskovitch, Winocur, & Berhrmann, 1997; Scalaidhe,
Wilson, & Goldman-Rakic, 1997; Tanaka & Farah,
1993; but see Gauthier & Tarr, 1997).

What are Rosch’s levels of classification levels of ?

Objects are named faster with their basic-level than with
their subordinate-level terms (Rosch et al., 1976). Part
of the advantage of the basic level derives from the
greater availability of basic-level names compared to
subordinate-level names. Rosch et al. showed that basic-
level terms appear first in the child’s vocabulary, have
fewer syllables, and are used much more frequently
to refer to an entity than the subordinate-level terms.
Basic-level concepts enjoy a visual advantage over su-
perordinate level concepts as evidenced by Rosch et al.’s
demonstration that members of a basic-level class, such
as sofas, tended to have more similar shapes than
members of a superordinate-level class, such as furni-
ture. Rosch et al.’s assessment was made by superim-
posing silhouettes of exemplars from the different levels
and noting that the basic-level composite image re-
mained more identifiable than a composite of superor-
dinate-level exemplars. The shape consistency enjoyed
by the basic over the superordinate level and the per-
ceptual advantage it confers are largely a consequence of
the availability of common parts at the basic level
(Tversky & Hemenway, 1984). Rosch et al. also noted
that pictures from the same subordinate-level class were
significantly more similar than pictures from a basic-
level class, although that increase in similarity was not as
large as an increase of basic- over superordinate-levels
similarity. The lower shape variability of the subordi-
nate-level class would be expected to make visual classi-
fication at that level easier, but this effect might be offset
by the greater salience, in general, of the perceptual in-
formation required to distinguish entities at the basic
level and, more importantly, the presence of more highly
similar but different exemplars at the subordinate level.

For the most part, the study of levels of classification
has not distinguished perceptual classification from
naming or name-verification. Often we become aware
that the two are not equivalent when we are unable to
name an object (a ““gizmo’’) or person that we otherwise
recognize.

Part of the reason why naming an image at the basic
level is faster than at the subordinate level is undoubt-
edly due to the greater frequency of occurrence and the
fewer syllables, on average, of basic level names. Both
word frequency and the number of syllables have been
shown to correlate with naming reaction times (see
Humphreys, Price, and Riddoch, in press for a recent
review). Independent of the ease of access of an object’s
name, the basic-level advantage in naming, as noted



earlier, could also be a consequence of the perceptual
information required for basic-level classifications sim-
ply being more discriminable or salient than the infor-
mation required for subordinate-level classifications
(Rosch et al., 1976). In addition, a representation of the
concept of the object, mediating access to its name,
might also be more readily activated in the case of basic-
level concepts, a result that might be expected from the
presumed greater frequency of making basic-level dis-
tinctions. Rosch et al. did not emphasize whether the
basic level was the level that was perceived, conceived,
or verbalized first, compared to the subordinate level.
From Rosch et al.’s discussion, it would appear that
both faster perceptual classification and faster access to
names or concepts were intended.

A framework for expressing this distinction between
perceptual and post-perceptual (e.g., name) classification
is contained in the neural network for object recognition
proposed by Hummel and Biederman (1992; described
later). Hummel and Biederman posited an object layer
(Layer 7 in Fig. 10), with individual units representing a
structural description of the object (i.e., its parts and the
relations among the parts). Units representing the ob-
ject’s name or other semantic information, such as its
concept, where it is found, or how much it cost, could be
associated with the object unit, but the ease with which
the object unit could be activated from a particular image
did not necessarily imply anything about the strength of
the connections from the object unit to the name and
semantic units. Thus, presentation of a ‘“‘nonsense’ ob-
ject composed of several clear, simple parts in a novel
arrangement could quickly recruit an object node and be
rapidly activated on subsequent exposures without any
activation of a unit for that object’s name. It is the acti-
vation of the object node that corresponds to what
Biederman (1987) termed primal access — the initial ac-
tivation of a perceptual representation of the object.

How should variability among subordinate members
of a basic-level class be represented?

Although it is possible for some basic-level classes, such
as staplers, to posses only moderate degrees of shape
variability, other classes, such as lamps, allow enormous
shape variability. Indeed, the aforementioned gain that
Rosch et al. (1976) noted in shape similarity of groups of
subordinate-level objects compared to groups of basic-
level objects could derive from the variability between
different subordinates within the same basic-level class.
For the low shape-variability class, it would be reason-
able for classification to be initially at the basic level,
with scrutiny required to distinguish among the subor-
dinate members.

For a class of high shape-variability, such as birds,
Jolicoeur, Gluck, & Kosslyn (1984) confirmed a con-
jecture of Rosch et al.’s (1976): Atypical members of a
category were more quickly classified at their own “‘entry
level” rather than at the basic level. For example, pen-
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guins and ostriches were classified faster as ““penguins”
or “‘ostriches,” respectively, than they were classified as
“birds.””?

Biederman (1987), distinguishing between visual and
verbal classification, proposed an even stronger modifi-
cation of object classification. Visually, that is, with re-
spect to an activation of an object node prior to the
elicitation of a name, a// visual classification is made at a
subordinate level, given that the different subordinates
were sufficiently distinct to initially activate their own
units. In terms of the Hummel and Biederman (1992)
network, these units would be in Layer 7 (L7). For a low
variability class such as staplers, there may be only a few
distinctive perceptual representations — that is, only a
modest number of different sets of L7 units would be
needed to handle the small number of exemplars (with
different units in a set needed to represent different
geons/relations for different views) — and hence the
subordinate and the basic-level classes would be the
same. For a high variability class such as lamps, there
would be many different visual representations, that is,
different L7 units, one set for ginger-jar lamps and an-
other for pole lamps, for example, even though the same
term, “lamp,” is the first name that tends to be activated
by any image of a lamp. Both kinds of lamps activate the
same name, but they need not have. Pole lamps, like
ostriches, could have had their own entry-level term, but
do not. That is, one may say “lamp” faster than “pole
lamp” to a picture of a pole lamp, but the visual rep-
resentation that is activated for the pole lamp would not
be the same as that activated for the ginger-jar lamp, as
evidenced by the reduced priming for different shaped
exemplars (e.g., Bartram, 1974).

There is actually little mystery in this common many-
to-one, image-to-class mapping. Nothing prevents dif-
ferent perceptual representations, such as different
shaped lamps, from activating the same class or name.
In general, the facility with which the same name is ac-
tivated from different perceptual representations will
vary according to a host of factors such as the “typi-
cality” of the object for its class and the pose or degree
of view ““‘canonicality’ of the object (Palmer, Rosch, and
Chase, 1981). From the current perspective, canonicality
could arise from the ease of activation of a perceptual
representation from the image, its distinctiveness, and
the strength of the association between the perceptual
representation and the name. A detailed analysis of the
perceptual demands of subordinate-level classification is
clearly critical for understanding these phenomena.

%In this paper, the term “basic level” will be retained, but with the
entry-level qualification that the basic level need not accommodate
highly atypical instances. That is, highly atypical instances of a
basic-level class become their own basic-level class, even though
technically they are members of the basic-level class. An indicant of
such membership is whether the term “‘technically” itself can be
applied to a classification. If it can, then we have an atypical
member that forms its own entry-level class. Thus, it is acceptable
to say “‘technically, a whale is a mammal,” but it would not be
acceptable to say “technically, a bear is a mammal.”
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Perceptual requirements for basic-
and subordinate-level visual shape classification

Geon-structural descriptions

Nonaccidental Properties (NAPs; Lowe, 1984) are
qualitative properties of images (hence they are 2D) that
tend not to change with small rotations of the object in
depth. With respect to image edges corresponding to
discontinuities in surface orientation and depth, these
properties can be expressed contrastively, such as
whether an edge is straight or curved, approximately
parallel or nonparallel, or the type of vertex that is
formed from the cotermination of edges.” NAPs can be
distinguished from metric properties, such as aspect ra-
tio, degree of curvature, or the different acute angles
between two segments of a bent paper clip, that do vary
with the object’s orientation in depth.

A GSD is a 2D representation of an arrangement of
parts, each specified in terms of its nonaccidental
properties (geons) and nonaccidental relations between
the parts. (See Hummel & Biederman, 1992, for a more
precise definition.) To the extent that the objects have
part structures where, across objects, the parts (or geons)
differ in NAPs and/or invariant relations with respect to
the other geons (e.g., end-to-end vs. end-to-middle
connected; smaller-than vs. about-same-size vs. larger-
than; above vs. side-of vs. below), then they can be said
to have distinctive GSDs (Biederman & Gerhardstein,
1993; Hummel & Biederman, 1992). The nonaccidental
specifications, to the extent that they are distinctive and
can be resolved, allow invariance in the recognition of
an object at different orientations in depth.

In a minimal case of subordinate-level discrimina-
tions, one object may be distinguished from another by a
speck that is present in one case but absent in the other
(presence-absence is a nonaccidental property, Jacobs,
1997). If both objects had specks, then they would be
distinguished by a GSD if one was pointy and the other
rounded, for example, but not if they were both highly
irregular and so could not be distinguished by a non-
accidental difference. In these examples, note that a
generalized cylinder (Binford, 1971) is not explicitly ac-
tivated, merely a surface. Any surface (or line) could be
an aspect or feature of a generalized cylinder (Dickin-
son, Pentland, & Rosenfeld, 1992) but they could, of
course, just be planar entities, as Biederman (1987) al-
lowed in his presentation of geon theory.

3Because of perspective convergence, parallel lines in the object will
converge if extended in depth. However, there is a strong percep-
tual bias to interpret approximately parallel lines as parallel if,
given uncertainty as to the true slant of the lines in depth, they
could be parallel (Biederman, 1987). Jacobs (1997) has argued that
there are an infinite number of nonaccidental properties for con-
figurations of five or more points. However, those nonaccidental
properties that are salient are those that are defined for a minimal
number of features (typically not more than three points).

The role of distinctive GSDs in basic-
and subordinate-level object classifications

Edelman and Biilthoff (1992) studied recognition of a set
of ten objects, each consisting of five elongated cylinders
joined end-to-end. The objects differed only in the angle
of their joins, so they looked like bent paper clips. Such
objects are extraordinarily difficult to distinguish when
they are presented at an orientation in depth that differs
from an originally studied view. The new orientations
must themselves be learned. Biederman and Gerhard-
stein (1993, Exp. 5) showed that substituting a different
geon for the middle cylinder of each of the paper clips,
so that they now resembled geon ‘“‘charm bracelets,”
rendered them readily identifiable from arbitrary orien-
tations in depth. That is, the distinctive GSDs allowed
the objects to achieve near-depth invariance without
learning. Biederman and Gerhardstein (1993) argued
that differences in distinctive GSDs form natural
boundaries between concepts. When such differences are
absent, as they are with a set of bent paper clips, people
do not spontaneously distinguish them, and it is
doubtful that any culture would create basic- or subor-
dinate-level distinctions across such stimuli (Biederman
& Gerhardstein, 1995).

GSDs versus “view-based’ accounts

Before considering recent evidence supporting GSDs, we
will first consider a class of theories that have been
termed ‘‘view-based” by their proponents. There have
been a variety of such proposals, but, as applied, these
theories essentially assume a template in which neither
NAPs nor parts nor GSDs are provided any special
status (e.g., Edelman & Biilthoff, 1992; Ullman, 1996).
The essential bit of data cited in support of these theo-
ries is the cost in recognition time or accuracy when an
object is viewed at an orientation in depth that differs
from a previously experienced pose and the reduction in
costs when that new pose is presented again. According
to one author (Tarr, 1995), for nearby views, the costs
reflect direct interpolation of the template between fa-
miliar views or extrapolation to a new view, but a more
costly normalization process, akin to mental rotation, is
required for recognition at greater rotation angles.

The issue, in our judgment, is not whether object
recognition is view-based. A/l object recognition is view-
based, hence the use of quotation marks around the term
“view-based” in this section’s title. As one of us has
noted previously (Biederman & Gerhardstein, 1995),
“view-based” is only worth arguing when the alternative
is extra sensory perception (ESP). That performance may
improve with repeated presentations of the new views
does not imply anything about the representation medi-
ating such views, whether it is a template or a GSD. The
real issue that needs to be decided is representation. Even
if we just consider the costs of rotation to a new orien-
tation, it is clear that different sets of stimuli produce



dramatically different costs for a given rotation angle
(Biederman & Gerhardstein, 1993). The costs in recog-
nition of a depth-rotated object could, as many view-
based theorists have attempted to demonstrate, reflect
distortions of a template. However, the rotation could, as
well, produce changes in an object’s geon structural de-
scription because, for example, the geons and their at-
tributes (e.g., coarse changes in aspect ratio and
orientation) are occluded, or new geons are revealed, or
the relations among the geons are altered (Biederman &
Gerhardstein, 1993). All of this must be understood in
terms of a resolution function specifying the time re-
quirements to determine, at some level of accuracy, an
object’s parts and relations under given presentation
conditions (e.g., duration, contrast, noise). This point
was made by Biederman and Gerhardstein (1993) in
discussing the need for a principled quantitative analysis
to determine the rotation costs for activating GSDs:
“Such an analysis would have to include a resolution
function in that a part need not completely appear or
disappear as a result of an orientation change before the
change will begin to affect performance” (p. 1180).

As noted in discussing the Biederman and Gerhard-
stein (1993) study of the effects of adding a distinctive
geon to each member of a set of bent paper clips, the
gigantic effect in this domain of research are the differ-
ences in rotation costs depending on the kind of infor-
mation that distinguishes the stimuli to be identified.
When the stimuli cannot be distinguished by GSDs,
enormous rotation costs are evident. In fact, perfor-
mance accuracy in same-different matching tasks for
such stimuli are often below chance! (see Biederman &
Bar, in press; 1998.) The presence of distinctive GSDs
allow an enormous reduction in rotation costs to where
they are small, if not absent.

Evidence cited in support of view-based accounts

In failing to provide any explanation for the extraordi-
nary large benefit offered by distinctive GSDs, view-base
theories are in danger of making a claim — that recog-
nition requires perception — which distinguishes no the-
ory of shape recognition. However, we can ignore
whether ““view-based” is a vacuous theoretical position
and consider two empirical claims that some view-based
theorists have raised as a challenge to geon theory: (a)
the presence of rotation costs for stimuli that differ in
GSDs, and (b) the lack of a sizable difference in rotation
costs between stimuli that do and do not differ in GSDs.
We will consider each of these claims in turn.

Are there sizable rotation costs for stimuli
that differ in GSDs?

A number of studies have documented rotation costs
where the rotations occluded some geons and revealed
others or produced accidental or near accidental views
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(e.g., Humphrey & Kahn, 1992; Srinivas, 1993). Michael
Tarr and his associates (Tarr, 1995; Tarr, Bilthoff,
Zablinski, & Blanz, 1997; Haywood and Tarr, 1997,
Tarr, Williams, Haywood, & Gauthier, 1998) have re-
cently reported rotation costs when accidental views
were, presumably, controlled. The magnitude of these
costs were small, as they were in the Biederman and
Gerhardstein (1993) experiment, relative to the rotation
costs incurred with stimuli that do not differ in GSDs, as
discussed in the next subsection. For example, Tarr et al.
(1998) studied the recognition of rendered single geons
adapted from Biederman and Gerhardstein’s (1993)
Exp. 4 with line drawings. [One of Tarr et al.’s (1998)
nine experiments did use line drawings.] If the slope of
the plot of reaction time against rotation angle (from 0°
to 90°) is expressed in °/s, then the rotation rates for
these stimuli ranged from approximately 750°/s for a
naming task to 3,600°/s for a Match-to-Sample task with
a Go/No-Go response. For some experiments, Bieder-
man and Gerhardstein reported flat functions or effec-
tive orientation costs of only 5,000°/s.

Do these slopes, shallow as they are, represent fun-
damental view-dependence as would be expected from,
for example, mental rotation or the extrapolation or
interpolation of templates, or do they represent varia-
tions in extracting GSDs at different rotation angles?
Although the possibility of a template-like representa-
tion cannot be definitively ruled out to account for some
of these rotation costs, there are a number of factors
other than template mismatching that easily could have
contributed to these costs. Despite the attempt at
avoidance of accidental views, many of the views were,
in fact, near accidents that required, for example, de-
termination of whether a single small contour was
straight or slightly curved, as Biederman and Gerhard-
stein noted. In Biederman & Gerhardstein’s (1993) Exp.
4 (Go No-Go, match-to-sample of single geons), whereas
most of the distractors never elicited a false alarm, some
had false alarm rates of 60 to 100%! Whereas Biederman
and Gerhardstein’s subjects were induced to respond
quickly and evidenced almost no rotation costs, but a
15-20% false alarm rate, Tarr et al.’s (1998) subjects
responded far more slowly but with a false alarm rate of
only 5% and a (modest) slope of 2,250°/s. It is likely that
subjects in the Tarr et al. (1998) experiments were taking
the time to resolve the small differences in contour
needed to reject a near distractor.

Biederman and Bar, (in press; 1998) have noted a
number of other artifacts in experiments that have re-
ported rotation costs with stimuli that differ in GSDs.
The essential point here is that rotation in depth tends to
produce drastic changes in the 2D image that can dif-
ferentially affect the perceptibility of the parts. Rendered
images, as compared to line drawings, can easily yield
lower contrast and noisy illumination and shadow con-
tours at the orientation and depth discontinuities im-
portant for resolving the geons. This appears to be
especially true in the Tarr et al. (1997) and Haywood
and Tarr (1997) experiments. As an object is rotated in
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depth, these effects can vary for different geons. In same-
different matching tasks, transients are produced when
rotated stimuli no longer occupy the same regions of the
screen so the absence of a transient is a reliable cue that
unrotated stimuli are the same. Biederman and Bar
(1988) showed that the rendering effects can be reduced
by increasing stimulus presentation durations. The im-
pact of the transient is reduced by shifting all stimuli,
even when they are not rotated. The shift increases the
difficulty of the 0° rotation condition relative to the
positive rotation conditions, thus producing lower ro-
tation costs. Biederman and Bar argued that these
transient shifts were the reason why, in the Haywood
and Tarr and Tarr et al. (1997) studies, a rotation from
0° to a slight angle, say 30°, produced greater costs than
rotations from greater angles, say from 60° to 90°. The
opposite would be expected from the template extrapo-
lation/mental rotation routines argued by Tarr (1995).
Biederman and Bar (in press) reported virtually no effect
of rotation in a same-different matching task for ren-
dered novel two-geon objects that differed in their GSDs
when longer exposure durations and shifted positions
were employed.

There is independent evidence that these types of
resolution variations may be sufficient to produce the
observed rotation costs. Curiously, most such experi-
ments have studied relatively small rotation angles, up to
90° and, in some cases, only to about 30° (Haywood &
Tarr, 1997). From a “view-based” perspective, a rota-
tion of 180° or mirror reflection of a bilaterally sym-
metrical object would be expected to produce enormous
rotation costs, relative to these slight rotations angles.
The opposite, however, occurs. Mirror reflections incur
no cost in priming in people (Biederman & Cooper,
1991a, b; Stankiewicz, Hummel, & Cooper, 1998) and
monkeys (Logothetis, Pauls, Biilthoff, & Poggio, 1994).
If one assumes that the object is bilaterally symmetrical,
then an algorithm developed by Vetter and Poggio
(1994) can match mirror reflected images without a
costly normalization procedure. However, the applica-
tion of such an algorithm would produce no costs for
rotation to any angles.

Do distinctive GSDs offer a benefit
in reducing rotation costs?

There would seem to be no question that when a set of
objects lack distinctive GSDs, the ability to recognize
them from arbitrary viewpoints would be much worse
than when distinctive GSDs are present. Thus, Rock and
DiVita’s (1987) subjects were at near chance levels in
recognizing which of two smooth complex novel wire
objects they had seen previously. Anyone who has tried
to recognize a rotated bent paper clip from among other
bent paper clip distractors, of the kind studied by
Edelman & Biilthoff (1992), quickly realizes the ex-
traordinary difficulty in performing such a task com-
pared to charm bracelets.

However, are GSDs an appropriate representation
to characterize this advantage of stimuli that differ in
geons and relations compared to those that do not so
differ? Tarr et al. (1997) performed a same-different
matching task with rendered versions of the Biederman
and Gerhardstein’s (1993) charm bracelets and a com-
parable set of paper clips. As would be expected from
the previous discussion, the charm bracelets were far
easier to recognize under rotation: At 90° the d’ for the
charm bracelets with a single distinguishing geon was
approximately 3.0; for the paper clips it was 0.5. Tarr
et al. (1997) also included charm bracelets with three or
five different geons (sampled from a set of ten). The
additional geons reduced performance so that with five
different geons the d’ at 90° was 2.0 (still markedly
greater than the d’ for the paper clips). Tarr et al.
(1997) interpreted this last result as evidence against
GSDs, insofar as the additional geons did not facilitate
performance. However, this interpretation is mistaken.
Hummel and Biederman (1992) had argued that their
network would not be able to distinguish a linear array
of three geons, much less five. Part of the reason is that
with single place predicate relations of the kind as-
sumed by Hummel and Biederman (e.g., a cylinder
side-of another geon), the inner orders of geons are not
distinguished. More generally, with the identical set of
side-of relations for all geons in all stimuli and ten five-
geon subsets of the same ten geons, the vectors de-
scribing the different objects would be highly similar,
thus reducing their discriminability. The consequence
of this is that one would have to employ complex rules
to distinguish the stimuli, such as: if the middle geon is
a cylinder and one of the end geons is a wedge, then if
the geon on the other side of the cylinder is a brick, it
is object A, but if that geon is a cone, it is object B.
Biederman and Gerhardstein (1993) explicitly argued
that stimuli from such sets are not distinguishable by
GSDs.

Biederman and Bar (in press) reported a critical
same-different experiment comparing the detection of
two-geon stimuli (see Fig. 3) that differed in a nonac-
cidental or in a metric property of a single part. Sub-
jects did not know which part, if any, would be
changed, nor in which manner (geon or metric). The
second stimulus was always shifted with respect to the
first, even when it was identical and not rotated. Sub-
jects saw a given pair of stimuli only once. Rotations of
~60° produced virtually no costs in detecting geon
differences, but the detection of metric differences was
below chance.

Last, Biederman and Bar (1998) investigated the
same-different matching of a set of bent paper clips of
the kind studied by Tarr et al. (1997). There were
striking differences in the miss and false alarm rates at
the identical rotation angles for individual pairs of im-
ages. Put simply, if the images projected by the first and
second stimuli differed in a qualitative feature, such as
an arrow vertex for one and a near linear array for the
other, then the subject tended to respond “different,”



producing high miss rates (>50%) when the objects
were the same and relatively low false alarm rates when
the objects were actually different (27%). When the
images did not differ in a qualitative feature, then the
subjects tended to respond ‘“‘same,” producing high false
alarm rates (as high as 88%!) when the stimuli were
different and low miss rates when they were the same
(as low as 4.6%). Despite a large number of paper clip
experiments, to our knowledge, this article is the first
published revelation of these enormous differences
which cannot be handled by models that do not distin-
guish these features. GSDs would appear to be an apt
representation not only for charm bracelets but for these
paper clip stimuli as well.

Confirmation of this conclusion can be found in the
observations of view-based proponents (in the restrictive
sense of “‘view-based’’) themselves. In training monkeys
to respond to a particular object at varied orientations,
Logothetis et al. (1994) noted:

... When the wire-like objects had prominent characteristics, such
as one or more sharp angles or a closure, the monkeys were able to
perform in a view-invariant fashion, despite the distinct differences
between the two-dimensional patterns formed by different views. ...
The animals easily learned to generalize recognition to all novel
news of basic objects [such as a teapot or spaceship]. ... The objects
were considered ‘basic’ because of their largely different shape from
the distractors. ... The monkeys had never seen these objects be-
fore. ... So, their remarkable performance may be the result of
quickly learning...some characteristic features of the objects, for
instance, the lid’s knob or the handle of the teapot, or some rela-
tionship between such features and a simple geometrical shape,
endowed with an axis of symmetry (p. 411).

Recent evidence for the role of GSDs in basic-
and subordinate-level classification

Biederman (1987; 1995) presented a number of studies
documenting the empirical support for GSDs. Briefly,
these can be grouped into studies demonstrating the
importance of parts, on the one hand, and simple,
nonaccidental shape differences, on the other. The latter
class of results includes those which demonstrate that
other variation is of little or no consequence in object
recognition.

Evidence for a parts-based representation
A. Verbal descriptions of objects

When asked to list the characteristics of basic-level ob-
jects, such as chair, car, or elephant, people list the parts
of the object (Tversky & Hemenway, 1984; Rosch et al.,
1976). Both Rosch et al. and Tversky and Hemenway
(1984) noted that an object’s parts often provide much
of the functionality of an object class. Tversky and
Hemenway (1991) also noted that familiar subordinates
are also distinguished by their parts. It is not obvious
how one maps a template representation of an object to
a representation of the object’s parts.
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B. Priming complementary images

Biederman and Cooper (1991b) produced pairs of
complementary contour-deleted line-drawings of com-
mon objects in which every other vertex and line was
deleted from each part so that the same parts could be
activated from either member of a pair. The members
of a complementary pair would produce an intact
original line drawing if superimposed. After naming
one of the briefly-presented images in an initial priming
block, subjects named either the identical image, its
complement, or a same name-different shaped exem-
plar. There was a considerable advantage of both the
identical and complementary images in both reaction
times (RTs) and error rates compared to the different
shaped exemplars, indicating that a large portion of the
priming was visual, and not just verbal or conceptual.
Most important, the identical and complementary
conditions were equivalent, showing a lack of contri-
bution of the lower level features (lines and vertices) in
the representation of the object (Biederman & Cooper,
1991b). This same study also ruled out any role for a
top-down effect in visual priming in this experiment by
showing that there was no visual priming between
parts-deleted complements in which half the parts were
removed from each image. Biederman and Cooper
(1991b) noted that the equivalence of identical and
complementary feature images were not limited to a
priming effect: Despite the complete non overlap in
features (lines and vertices), members of a comple-
mentary pair, at first glance, look equivalent. Scrutiny is
required to appreciate that they are different. Bieder-
man and Cooper (1991b) concluded that the lines and
vertices were required to activate the representation of
the parts, but the representation that mediated priming
specified the parts, not the particular vertices and lines
present in the original image. Later we review research
(Kalocsai & Biederman, 1997) indicating that only a
portion of these differences can be accommodated by
routines for smooth continuation.

C. The advantage in recognition
of recoverable versus nonrecoverable images

Biederman (1987) showed that line drawings of common
objects that had undergone nonrecoverable contour de-
letion — the deletion of contour that prevented recovery
of the parts — were unrecognizable, whereas the same, or
even a greater amount of contour deletion, would allow
recognition as long as the parts were recoverable. This
study also eliminates a possible role of direct matching
of spatial filter components, as Fiser, Biederman, and
Cooper (1997) showed that recoverable and nonrecov-
erable images were equally similar to the original intact
images (see Fig. 8 below). As two or three parts can be
deciphered in the recoverable image, the recoverable
images enjoy an advantage in identifiability, even when
they are partially occluded so that they only have
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approximately 50% of the contour of the nonrecover-
able images (Biederman, 1987).

D. The priming and matching invariance
of depth-rotated stimuli that differ in GSDs

The invariance in shape priming or matching over
depth-rotated stimuli that differ in GSDs, described
previously, is evidence against the role of global shape
(Biederman & Bar, in press; 1998; Biederman & Ger-
hardstein, 1993).

E. Independent processing of parts

Recently, Koen Lamberts and his associates (Lamberts,
1998; Lamberts & Freeman, in press; Freeman &
Lamberts, 1998) have presented strong evidence for the
parallel independent sampling of an object’s parts in the
earliest stages of categorization. Subjects had to classify
a particular image of a four-part lamp (top, shade, stem,
and base), say, into one of two four-lamp categories,
defined by different shapes for each of the parts, such as
a square or round base. The parts could vary in sa-
lience, and a given shape for a part was more charac-
teristic of one of the categories than the other; for
example, three of the four lamps in category A had
square bases. Using a deadline procedure in which
subjects had to emit an instantaneous response to an
unpredictable signal, these investigators showed that a
lamp with a high salience part biased toward category A
and with lower salience parts that unequivocally indi-
cated that the lamp actually belonged to category B
would be responded to as an A under very short
deadlines but as a B under longer deadlines. More im-
portantly, the quantitative data were fit by a model that
assumed parallel and independent processing of the
object’s parts, as posited by geon theory (Biederman,
1987; Hummel & Biederman, 1992).

Evidence for the importance of simple,
nonaccidental differences in object parts

The studies just reviewed in the previous section docu-
mented the role of parts in object recognition. We now
review evidence suggesting that the representation of
the parts can be modeled as geons in that NAPs are
important and recognition depends less on metric and
irregular contour variations.

A. Greater salience of NAPs over metric properties
in sequential name matching

Subjects in Cooper and Biederman’s (1993) experiment
viewed sequentially presented pairs of line drawings of

simple objects composed of two parts. Each image was
shown for 100 ms, followed by a 100-ms mask. Subjects
judged whether the two images had the same or different
name. On half the same trials, the aspect ratio of one of
the parts (e.g., the cylindrical base of a lamp) would
vary. In the other half of the same trials, the geon for
that base would change from a cylinder to a brick, but
the aspect ratio would remain the same, as illustrated in
Fig. 1. Compared to the “standard” object (Fig. 1), the
differences in aspect ratio were scaled to be moderately
greater that the differences in geons, as assessed by the
Lades et al. (1993) system (described later) and also as
assessed by a simultaneous same-different matching for
physical identity. Despite the greater scaled similarity of
the geon changes, matching two images differing in a

NAP
Change

Metric
Change

Standard

Fig. 1 Sample object stimuli from Cooper and Biederman (1993).
Given the standard object on the left, a NAP of only a single part was
changed in the objects in the middle column (NAP condition), and
that same part was lengthened in the metric condition illustrated by
the objects in the third column. Whereas the difference between metric
and standard images were more readily detected when performing a
simultaneous physical identity matching task (Are the objects
identical?), in a sequential object matching task (Do the objects have
the same name?), a change in a NAP resulted in far more disruption
than a change in a metric property. The magnitude of the metric
changes were slightly larger than the NAP changes, according to the
Lades et al. (1993) model. The distortion of a regular lattice calculated
by that model is proportional to the dissimilarity between two images
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Fig. 2 Sample stimuli from Cooper et al. (1995). The two regular
clocks on the left are slightly more similar in shape according to the
Lades et al. (1993) model than the two irregular clocks on the right.
Nonetheless, basic-level matching was more disrupted by a change
from one regular exemplar to the other than between one irregular
exemplar and the other

geon, such as a cylinder-base lamp and a brick-base
lamp as “lamps,” resulted in longer RTs and higher
error rates than matching two images with a part dif-
fering only in aspect ratio. Longer RTs and higher error
rates would be expected if the two images to be judged
“same” were perceptually more dissimilar.

B. Insensitivity to irregular shape variations

In a design similar to that of Cooper and Biederman’s
(1993), Cooper, Subramaniam, and Biederman (1995)
showed that sequential name matching of simple objects
was unaffected by changes in the irregularities of a part
(Fig. 2), but that changing a nonaccidental characteristic
of a regular part resulted in elevated RTs and error
rates. For example, instead of the base of a lamp being a
cylinder or a brick, it was a highly irregular free-form
mass of approximately the same aspect ratio as the
regular parts. Subjects judged whether two object im-
ages, each presented for 100 ms and each followed by a
500-ms mask, had the same or different name. On same
trials the images could differ in a geon, from brick to
cylinder, for example, or in the shape of an irregular
part. (The magnitude of the geon and irregular part
changes were scaled according to the Lades et al., 1993,
model of spatial filter similarity.) Although there was no
effect of a change in the shape of an irregular part, that
the part is irregular is coded nonetheless in that a change
from a regular to an irregular part or vice versa resulted
in large decrements in matching performance.

C. Depth invariance conferred by differences
in GSDs but not metric properties

Biederman and Bar (in press; Fig. 3) replicated Bieder-
man and Gerhardstein’s (1993) result that depth-rotated
stimuli could be recognized without cost when the dis-
tractors differed in a geon. They further showed that in
the identical paradigm where the detectability of geon
and metric differences were equated at 0° differences in
orientation, a depth rotation of about 60° drove detection
of metric differences to below chance accuracy. Subjects
in this experiment had only one trial (“one shot”) with a
given stimulus pair and could not predict if the objects
would differ and, if so, what part would differ and in what
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Fig. 3 Sample two-geon stimuli and trial types in the Biederman
and Bar (in press) experiment. On half the trials the stimuli were
same, and an half they were different. When different, the stimuli
could differ in a NAP of a part or a metric property of that part. The
stimuli were calibrated so that metric and geon differences were
equally detectable at 0° rotation. Rotation in depth (average 57°)
resulted in no cost in detecting the geon differences but produced
performance for detecting the metric differences to below chance levels
of responding

way. The advantage of the geon-differing pairs in this task
refutes Tarr and Bilthoff’s (1995) claim that nonacci-
dental properties only confer an advantage when ob-
servers know in advance where and what they are.

These studies document the importance of a NAP
characterization of even a single object part in mediating
subordinate level recognition. The same experiments
document a lack of an effect of variations in aspect ratio,
irregular contours, and metric information, in general,
even when equated to geon differences according to an
early filter similarity space according to the Lades et al.
(1993) model. We also note that GSDs provide a rep-
resentation format that can be directly mapped onto the
linguistic units that people employ in describing objects
and reasoning about them (Tversky & Hemenway, 1984;
Hummel & Holyoak, 1997).

D. Neural tuning

The moderately complex feature tuning of cells in the
inferior temporal (IT) cortex of the macaque, reported by
K. Tanaka (1993), to a considerable degree can be char-
acterized as preserving NAPs. Similarly, Logothetis,
Pauls, & Poggio (1995) allowed that a small set of dis-
tinctive features might have been what was mediating the
responses of the IT cells that were responding to a
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particular view of an object. (See, also, the previous dis-
cussion of the studies of Logothetis et al., 1994; 1995).
Given that an object can be recognized with little or no
cost under dramatic changes in viewpoint variables of
position, size, and orientation, while at the same time the
subject retains explicit episodic memory for the specifi-
cations of the view, such as the object’s original position,
size, and orientation (e.g., Biederman & Cooper, 1991a,
1992; Cooper, Biederman, & Hummel, 1992), neural
evidence for both types of representations should be
found.

Implications for subordinate-level classification

In the Cooper and Biederman (1993) and Cooper,
Subramaniam, and Biederman (1995) experiments, the
critical differences in the stimuli concerned a single part.
Tversky and Hemenway (1984) and Murphy and Las-
saline (1997) noted that a difference in a single part is
often sufficient for subordinate level distinctions. Con-
sequently, the information emphasized by distinctive
GSDs — nonaccidental differences and simple parts —
likely plays an important role in the recognition per-
formance for such stimuli, just as they do in basic-level
naming.

Three subordinate level object cases

The degree to which subordinate-level entities differ in
GSDs and the scale of these distinctive GSDs (if present)
vary on continua. However, there are three important
qualitative landmarks on these continua that may de-
termine the type of processing that is employed to dis-
tinguish among subordinate objects.

We suggest here a taxonomy of subordinate-level
object classification tasks based on the perceptual re-
quirements for achieving a given classification. (The
possible special case of face individuation will be dis-
cussed later.) We can describe the perceptual require-
ments for a particular subordinate-level classification of
an object in terms of (a) the kind of information that is
available for distinguishing among the various subordi-
nates, NAPs versus metric properties, (b) the scale (size)
of the contours or surfaces that are to be distinguished,
and (c) the magnitude of the to-be-discriminated differ-
ences, that is, the similarity of the values that have to be
distinguished.

We will argue that people are predisposed to employ
NAPs rather than metric properties, even when the in-
formation distinguishing the NAPs is at a small scale.
Only when there are large differences in metric proper-
ties will such information be employed. In such cases,
the nominally large metric difference will often produce
a NAP difference, either in a geon property or in the
relations among geons. For example, consider an object
part that is very small in one case and very large in
another. The difference might be readily distinguished as

smaller-than versus larger-than some other part rather
than the absolute size of the part.

Although a given subordinate-level classification can
fall anywhere on the three attributes, the bias toward
using NAPs and the ease of using such information, even
when the differences are just modest, suggest three
prototypical cases. Two of these subordinate subclasses,
those that employ NAPs at a large or small scale, Cases
1 and 2, respectively, account for the vast majority of
subordinate-level classifications that can be made
quickly and accurately in everyday and technical lives.
To a large extent, NAPs are the visual information re-
quired to achieve basic-level classifications; thus, as
discussed earlier, there is little to perceptually distinguish
basic-level and Case 1 subordinates, except that the
former have unique names. Case 3 requires discrimi-
nating similar values of metric information and such
classifications are performed rarely, primarily in tech-
nically constrained tasks.

Case 1. Large part or relation differences
or very large differences in metric values

Consider, first, the differences between such subordinate
pairs as a grand piano and an upright piano, a pole lamp
and a ginger jar table lamp, and a round table on a
central pedestal and a square table with four legs. In
these examples, the GSDs differ in both geons and re-
lations, and consequently, discriminating among these
instances will tend to be fast, accurate, viewpoint-in-
variant, and readily labeled. Even if only a single large
geon were to distinguish the instances, as with a square
and a round table, both with four legs, then easy and
invariant subordinate discrimination would be evi-
denced (Biederman & Gerhardstein, 1993).

Large differences in metric properties can also lead to
a different viewpoint-invariant characterization of the
object as occurs when the relative size of the parts and
their qualitative aspect ratios (i.e., whether the axis is
longer, approximately equal to, or shorter than the cross
section of the geon) vary. In these cases a different object
classification can be invoked, as with a nail and a tack.
For the tack, the axis of the shaft is approximately equal
to the diameter of the head; it is longer for the nail. This
variation would produce different GSDs (Hummel &
Biederman, 1992) and, consequently, relatively easy
subordinate discriminations.

Very large metric differences that do not change
relations can also be readily discriminated, such as
those of a yardstick and a 12-inch ruler or a truck and
a toy truck. However, when metric and viewpoint-in-
variant differences are scaled according to same-differ-
ent judgments of physical identity of simultaneously
presented stimuli, it is clear that differences in NAPs
are far more salient than differences in metric proper-
ties, and only the NAP-differing stimuli reveal imme-
diate viewpoint invariance (Biederman & Bar, in press;
1998).



Case 2. Differences in GSDs at a small scale

A second basis for distinguishing among subordinate
classes arises with those cases in which a small viewpoint
invariant difference is employed to distinguish among
otherwise highly similar and complex entities, such as
when we employ the logo or name to distinguish a
Mazda from a Ford or attempt to distinguish a bull
from a cow. (Letters have evolved and logos are de-
signed to differ in NAPs.) Scientists studying a pod of
sperm whales use the nonaccidental aspects of the pat-
tern of tears and nicks in the trailing edge of the tail to
distinguish the individuals in the pod (Nature TV pro-
gram, 1996). In these cases, a basic-level classification is
first performed — that the object is a car, a bovine, or a
whale — and then a search is undertaken for the distin-
guishing geon differences, such as the logo, udders, or
nicks, to determine the subordinate classification. San-
ocki (1993) makes a similar point in a priming study in
which the brief presentation (33-67 ms) of the external
outline of a house or vehicle immediately prior to a
briefly presented stimulus is shown to facilitate the
identification of the subordinate type, despite the ex-
ternal outline being common to all the subordinates. The
critical subordinate level information — knowing where
to look for a small viewpoint-invariant difference — is
thus based on an initial basic-level classification of the
object, a house or vehicle in Sanocki’s task. Depending
on the difficulty of locating the critical information and
determining its shape, such tasks could be more difficult
to perform than Case 1 subordinates. Subordinate dis-
criminations of this type promise the greatest gains from
minimal training: All one has to do is to learn where to
look for a NAP difference (Biederman & Shiffrar, 1987).

Case 3. Small metric differences

The third case is that in which the critical information
for distinguishing among subordinate entities is funda-
mentally metric. Such information would primarily in-
clude small differences in aspect ratio or curvature of a
region, such as distinguishing between a 1/4-inch drill bit
and a 3/8-inch drill bit. These types of subordinate dis-
criminations are the most difficult of the three cases,
particularly when the objects are free to rotate in depth.
It is not clear that humans have much facility for per-
forming such classifications or ever spontaneously do so
(Biederman and Bar, in press; Biederman, 1995;
Biederman & Gerhardstein, 1993, 1995; Miller, 1956).*

“This discussion as to the employment of small metric differences is
limited to object classification. There is extensive evidence that
different kinds of representations mediate object classification and
motor interactions (Milner & Goodale, 1995; Biederman & Coo-
per, 1992). Thus, the dorsal pathway, extending from VI to the
posterior parietal cortex, which is crucial for visual control of
motor interaction with objects, is well-tuned to metric properties.
The ventral pathway, extending from VI to V2 to V4 to IT, is
crucial object classification and is sensitive to GSDs.

141

There is often considerable mysticism concerning
expert perceptual discriminations (Biederman & Shif-
frar, 1987). Tanaka and Taylor (1991) reported that bird
(but not dog) experts were able to more quickly reject
false instances at a subordinate level (oriole?) than at a
basic level (bird?). However, the distractors (i.e., false
instances) were selected to ““‘maximize the visual contrast
between target pictures’ (p. 472). That is, the distractor
for the oriole would be a duck, not a tanager! Because
the picture pairings were repeated, it is also possible that
subjects were able to exploit not only the class differ-
ences in shape, such as between an oriole and a duck,
but also any fortuitous differences in pose and setting.

A number of investigators have attempted to study
Case 3 subordinate recognition with stimuli resembling
bent paper clips (e.g., Biilthoff & Edelman, 1992), dif-
fering only in the angle between the segments. The
learning that is evident when people study such complex,
metrically varying sets of stimuli at particular poses,
however, may well be based on qualitative configura-
tions. For example, a normally viewpoint-invariant
characteristic, such as the approximate cotermination
of the endpoints or approximate parallelism of two
segments, might be present only for a narrow range of
orientations (Biederman, & Gerhardstein, 1993;
Biederman & Bar, 1998). Subjects may learn to associate
a set of these configurations with a given paper clip to
distinguish it from other bent paper clips, as discussed
previously. This type of subordinate classification might
thus be properly regarded as an instance of Case 2 rather
than Case 3.

For metrically varying stimuli which do not afford
qualitative features, a similarity space for stimuli may be
determined, a priori, from a representation based solely
on the pattern of activation of a lattice of multiscale,
multiorientation Gabor-type filters (e.g., Lades et al.,
1993; Biederman & Kalocsai, 1997). Thus, RTs and er-
ror rates for discriminating between a pair of complex,
random appearing blobby shapes (created by Shepard &
Cermak, 1973) or a pair of highly similar faces is
strongly and negatively correlated with such a similarity
measure (Biederman & Subramaniam, 1997; Biederman
& Kalocsai, 1997). As stimuli are selected that are less
and less similar, so they can be distinguished by differ-
ences in part structures or viewpoint-invariant proper-
ties — when they become instances of Case 2 rather than
Case 3 discriminations; the spatial filter similarity space
is no longer relevant (Fiser et al., 1997; Biederman &
Bar, 1998; Biederman & Subramaniam, 1997).

It is easy to imagine sets of objects, all from the same
basic level class, in which the information specified by
Case 1 is sufficient to distinguish among some of the
subordinates, that specified by Case 2 to distinguish
among others, and the fine metric differences specified
by Case 3 required to distinguish still others. An easy-
to-difficult hierarchy would likely be manifested in the
subordinate classification of complex objects, whereby
more difficult stimulus discriminations would only be
engaged to the extent that they were required.
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The ecological frequency of the three classes
of subordinate level discriminations

Biederman and Gerhardstein (1993) asserted that Case 3
subordinate classifications (small metric differences)
were made only rarely by people in their everyday lives.
(This claim is made with respect to the representations
mediating the classification of objects, rather than with
the representations mediating the motor interactions with
those objects.) Tarr and Biilthoff (1995) have argued
that the absence of precise statistics of the frequency of
performing the three cases of subordinate discrimina-
tions prevents one from assessing the importance of
GSDs relative to metric variations. Although exact fre-
quency counts are unavailable for the different kinds of
classification, it is not too difficult to determine orders of
magnitude estimates for the frequencies of the different
classes.

Entry-level classifications, which govern to a large
extent how we understand our visual world and how we
select objects for interaction, are almost always con-
veyed by large differences in GSDs, documenting the
high frequency at which objects are classified through
discriminations of the first kind. What would be an
upper-bound estimate of the possible rate of such
identifications? Accurate identification of object pictures
displayed by rapid serial visual presentation (RSVP)
techniques can be revealed with presentation rates of 10
pictures per second (Potter, 1976). Barring fatigue and
boredom, this rate would allow a capacity of 576,000
objects per 16-hour day. Only a third of this value would
be achieved if we were limited to the normal scanning
eye fixation rate of 3 fixations/second, although this re-
duction in the upper bound of the possible rate of object
identification would be more than balanced by the high
frequency at which we generally appreciate not a single
object but many objects interacting to compose a real-
world scene.

It is, of course, difficult to estimate actual numbers,
as many classifications are implicitly made without an
overt response, such as when we select a chair in a room
so that it is near a table and a lamp, but with a view of
the door and window. Although we may not explicitly
name or motorically interact with the object, Smith and
McGee (1980) showed that the classification of a picture
of an object is fast, obligatory, and automatic. A large
number of the objects in a scene are thus identified.’
Probably our highest everyday rates of object recogni-
tion are achieved when quickly changing television
channels (““‘channel surfing”) and our lowest rates
achieved when we perform some repetitive activity in a
restricted environment, such as reading or playing rac-
quetball. Informal, subjective observations by the first

SAlthough identification of many objects in a well-formed scene
from a single glance is achieved (Biederman, 1987; Biederman,
Mezzanotte, & Rabinowitz, 1982), there is very poor memory for
those objects or their attributes unless they are explicitly attended
(Rensink, O’Regan, & Clark, 1996).

author (IB) suggest that basic level classifications — often
of several objects and their interactions — are performed
at least once per saccade. If we take two objects per
fixation and one fixation per second to be lower-bound
estimates, then we are performing approximately 57,600
classifications of the first type in a 16-hour waking day.
Mental comparison of complex objects differing met-
rically is made only a few times per day.

The discussion of the frequency of these classifica-
tions of the first type has, until this point, not distin-
guished entry-level from subordinate level classifications.
According to geon theory (Biederman, 1987; Biederman,
& Gerhardstein, 1993; Hummel & Biederman, 1992), all
object representations are minimally specified at the level
of Case 1 insofar as the representation specifies the parts
and relations comprising a geon structural description.
An alteration in a geon or relation will activate a dif-
ferent GSD, although not necessarily a different entry-
level classification, as with the aforementioned square
and round table. Whether the representation specified
the small scale or metric information required for Case 2
and Case 3 classifications undoubtedly will vary with the
necessity to use that information.

Subordinate-level classifications of the second type,
as when we determine the make of a car from its logo,
are made far less frequently than those of the first type.
IB’s diary account suggests that such discriminations
may be made at the rate of several per hour, although
the rates can certainly increase to several per minute in
certain activities, such as when reshelving books in a
library or classifying collections of butterflies.

It is only rare that we make subordinate-level classi-
fications of the third type, those based on fine metric
differences. Although there are an abundance of metric
differences among sedans, which we can appreciate by
superimposing one image on top of another, we almost
never employ such information in determining the
manufacturer. Instead, we ignore these metric variations
and seek out the name or logo of the car. If we try to
distinguish identical models of chairs in our office, we
look for a distinguishing stain or scratch. Birds of North
America (Robbins, Bruun, Zim, & Singer, 1983), com-
monly referred to as “The Golden Guide,” presents
nonaccidental descriptors to distinguish highly similar
birds, such as “a curved plume” versus a ‘‘straight
plume” for distinguishing among western U.S. male
quail.

The extreme reluctance to employ metric variations
for representing differences among highly similar objects
almost amounts to an aversion. Biederman and Ger-
hardstein (1995) recount how a figure was mistakenly
described as three different orientations of the same bent
paper clip. In a large number of presentations, preprints,
and a publication, the error — it was actually three dif-
ferent paper clips rather than one — was never detected.
The aversion to making metric judgments is likely based
on a realistic appraisal of one’s own capacity. A human
can easily judge which one of two side-by-side lines is the
longer, but object identification is an absolute judgment



task, requiring memory and categorization, and the
speed and accuracy of such judgments for metric varia-
tions is severely limited (Miller, 1956). In summarizing a
large body of research, Miller noted that the capacity for
errorless classification of a unidimensional metric prop-
erty was 7 £+ 2. Often, such judgments are made slowly
and deliberately, with much more time required for their
execution than that for object classification. At an un-
certain orientation in depth, the accuracy of metric
judgments declines precipitously (Biederman & Bar,
1998). Despite a lifetime of exposure to rulers, few of us
can accurately — much less, quickly — judge, within a
centimeter, the length of the stapler on our desks. Simi-
larly, we have all seen particular angles, formed by
junctions of pipes, paper clips, etc., rotate in depth. Yet it
does not seem possible for us to generalize that experi-
ence when performing in a bent paper clip experiment.

That people exploit small viewpoint-invariant (rather
than metric) differences when such information is
available in making classifications among highly similar
entities was demonstrated by Biederman and Shiffrar
(1987) in a task in which subjects had to determine the
sex of day-old chicks based on pictures of their genitalia.
This task, which was reputed to be the most difficult
visual learning task known — presumably requiring years
to master — could be learned with less than a minute’s
instruction as to where to look to find a structure (the
“eminence’’) and determine a simple viewpoint-invariant
difference as to whether it was convex (male) versus
concave or flat (female).

Similarly, Biederman and Shiffrar (1987) noted that
a proposed training program (Kotas & Bessemer, 1980)
for teaching military personnel how to distinguish
NATO from Russian tank, emphasized distinctive fea-
tures that were, in fact, viewpoint-invariant part differ-
ences. Figure 4 shows four NATO and three Russian
tanks redrawn from Kotas and Bessemer’s report. A
simple, viewpoint-invariant rule allows easy classifica-
tion of these images into the two categories: If the rear

6Axel Larsen (Personal communication, 1998) has raised an alter-
native possibility that, rather than searching for nonaccidental
differences, the great difficulty in discovering the basis of the dis-
crimination for chick sexing is that there is ““a natural inclination to
use metric alignment as a basis for recognition.” Our own view is
the opposite: that people generally search for a nonaccidental
feature, even (especially) at a small scale. Metrical alignment when
done mentally is difficult, and there is some evidence that people do
not spontaneously do it, insofar as a large number failed to detect
that an oft-shown image labeled as different views of the same bent
paper clip was actually three different clips (Biederman & Ger-
hardstein, 1995). The presence or absence of ‘“‘accidental” quali-
tative features for depth-rotated stimuli dominate performance in
matching metrically varying objects such as bent paper clips
(Biederman & Bar, 1998). What may appear as metric alignment
could be the matching of corresponding parts. We do not know
why chicken sexing took so long to discover, but undoubtedly the
lack of quick feedback. We do not know why chicken sexing took
so long to discover but undoubtedly the lack of quick feedback
(unless the chick is sacrificed on the spot) contributed to the diffi-
culty. Secondary sexual characteristics do not appear until the
chick is one month old.
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Fig. 4 (From Biederman & Shiffrar, 1987, redrawn from Kotas &
Bessemer, 1980). NATO and former Soviet Union (FSU) tanks. The
rear of the turrets of the FSU tanks, designated by the T in their
names, are all completely rounded. (From Kotas and Bessemer, 1980.
Adopted with permission)

of the turret is completely curved (i.e., not straight or
notched), then it is a Russian tank.

The bird typing, chicken-sexing, tank-classification,
and auto identification tasks can thus be solved by a
similar strategy. First, a determination is made of the
basic-level class of the image, for example, that it is chick
genitalia, a tank, or a car. Often, of course, this infor-
mation is known at the outset of the task. Then, a
smaller region is isolated, such as the eminence, rear of
turret, or logo (or name), and a classification based on
viewpoint-invariant differences is made of that region.
These are all instances of Case 2 subordinate level dis-
criminations. If viewpoint-invariant differences are not
present (or known), then an organism attempting a
classification would have to resort to discriminating
metric properties (Case 3).

Often, the ability to make absolute judgments is
regarded as a special talent or learned skill, such as
“perfect pitch” or the ability to make fine discrimina-
tions in an industrial inspection task, rather than as a
regular characteristic of everyday recognition. In any
event, the representation that is at the core of many of
the “view-based” models — a template specifying precise
metric values — would seem to be an inappropriate model
to account for human object recognition performance.

Representations mediating subordinate-level
classifications: Metric templates
or geon structural descriptions?

As suggested previously, recent theorizing on shape
representation has coalesced around two theoretical
perspectives: metric templates and invariant parts. We
here consider these theoretical positions in somewhat
more detail. Both classes of theories assume that an
image of an object is initially represented in terms of the
activation of a spatially arrayed set of multiscale, mul-
tioriented detectors, such as the arrangement of simple
cells in V1 hypercolumns.
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Metric templates

Metric templates (e.g., Edelman, 1995; Lades et al.,
1993; Poggio & Edelman, 1990) map these values (a)
directly onto units in an object layer, with each unit
representing a different stimulus (Lades et al., 1993;
Edelman, 1995) or (b) onto hidden units which, over
experience with the stimuli, can be trained to differen-
tially activate or inhibit object units in the next layer
(Poggio & Edelman, 1990). Metric templates preserve
the 2D retinotopic spatial positions and metrics of the
inputs, without explicit specification of edges, viewpoint-
invariant properties, parts or relations among parts. The
distribution of the pattern of activation over the detec-
tors becomes the representation which can then be
compared to new patterns (e.g., Lades et al., 1993;
Poggio & Edelman, 1990; Edelman, 1995).

A biologically inspired, highly successful face rec-
ognition system developed by Christoph von der Ma-
Isburg and his associates (Lades et al., 1993; Wiscott,
Fellous, Kriiger, & von der Malsburg, 1997; Biederman
& Kalocsai, 1997) suggests a theoretical perspective
from which many of the phenomena associated with
the present discussion of template models might be
understood. We focus on this system because the rep-
resentation is motivated by the early spatial represen-
tations of human vision and, as will be discussed, the
model’s determination of shape similarity correlates
extraordinarily well with human psychophysical simi-
larity of complex shapes and faces where distinctive
GSDs are not available. The representation does not
make explicit the critical information in GSDs — parts,
nonaccidental properties, and explicit relations — which
are, presumably, determined later in the ventral path-
way. The quantitative specification of early shape
similarity provided by the model thus provides a basis

Fig. 5 Illustration of the input
layer to the Lades et al. (1993)
network. The basic kernels are
Gabor filters at different scales
and orientations, two of which
are shown on the left. The
center figure illustrates the
composition of a jet, with the
larger disks representing lower
spatial frequencies. The number
of jets, scales, and orientation
can be varied. (From Bieder-
man & Kalocsai, 1997)

Filters

Gabor wavelets
(B orientatons, 5 scales)

with which to assess and evaluate the contribution of
GSDs.

As diagrammed in Fig. 5, the fundamental represen-
tation element is a column of multiscale, multiorienta-
tion spatial (Gabor) kernels with local receptive fields
centered on a particular point in the image. Each column
of filters is termed a “Gabor jet” and each jet is pre-
sumed to model aspects of the wavelet-type of filtering
performed by a V1 hypercolumn. As illustrated in
Fig. 6, Lades et al. (1993) posited a two-layer network.
The input layer is a rectangular lattice of Gabor jets. The
pattern of activation of the 80 kernels (5 scales x 8 ori-
entations X 2 phases, sine and cosine) in each of the jets
is mapped onto a representation layer, identical to the
input layer, that simply stores the pattern of activation
over the kernels from a given image. An arbitrary large
number of images can be stored in this way to form a
gallery.

Matching a new image against those in the gallery is
performed by allowing the jets (in either the probe or
a gallery image) to independently diffuse (gradually
change their positions) to determine their own best fit, as
illustrated by the arrows on the jets in the input layer.
This allows a matching of two images that may have
moderately different orientations and expressions. The
similarity of two images is taken to be the sum (or mean)
correlation in corresponding jets of the magnitudes of
activation values of the 80 corresponding kernels. The
correlation (range 0 to 1) for each pair of jets is the
cosine of the angular difference between the vectors of
the kernels in an 80-dimensional space. (If the values are
identical, the angular difference will be 0 deg and the
cosine [=correlation] will be 1. The greater the differ-
ences in the vectors, the greater the angle, and the lower
the cosine.) The correlations over the jets are summed
to get a total similarity score. The degree of deformation

Feature (Jet)

Model (Graph)

set of Bx5 filter responses

at one image location
(only 4x3 am repreacnted bere)

grid of 4x6 connected jets



Fig. 6 Schematic representa-
tion of the Lades et al. (1993)
two-layer spatial filter model.
The model first convolves each
input image with a set of Gabor
kernels at five scales and eight
orientations arranged ina 5 X 9
lattice. (Any or all of these
parameters can be varied.) The
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Stored object representation

set of kernels at each node in
the lattice is termed a “Gabor
jet.” The activation values of
the kernels in each jet along
with their positions are stored
for each of the images to form a
“gallery.” The drawing shows
the diameters of the receptive
fields to be much smaller than
actual size in that the largest
kernels had receptive fields that
were almost as large as the
whole face. (From Fiser et al.,
1997)
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of the lattice of original positions typically provides a
visual measure of the similarity of two images.

Given a test image against a number of stored images,
the most similar image is taken to be the recognition
choice. Over modest changes in pose and expression and
modest-sized galleries of faces (a few hundred), the
Lades et al. (1993) model does a good job at recognizing
faces, with recognition accuracy that can exceed 90%.
Recent extensions of the model (Wiskott et al., 1997),
described in the section on Face Recognition, in which
each jet is centered on a facial landmark, such as the
temporal corner of the right eye, can achieve 95% ac-
curacy in galleries of several thousand faces with greater
variations in input conditions (e.g., pose, expression,
lighting). The Lades et al. model can be readily applied
to the similarity scaling of objects as well as faces, so it
has the potential to serve as a device for the scaling of
both kinds of stimuli. Figure 7 (from Kalocsai, Bieder-
man, & Cooper, 1994) shows three pairs of images
scaled by the model. The images are of the same in-
dividual and the pairs differ in pose and expression. The

| 4

Fig. 7 Sample images from the Kalocsai et al. (1994) experiment
with the Lades et al. (1993) lattice deformations superimposed over
different pairs of images of the same person. The positioning of the
lattice over an original image is shown in the left-hand column («)
and the deformed lattice is shown in the right-hand column (b). Top,
middle, and bottom rows show changes in expression, orientation
(60°), and both expression and orientation, respectfully. The
similarities as determined by the Lades etal. (1993) model
correlated highly with performance in matching a pair of images
when there were at different orientations and expressions (Kalocsai
et al., 1994)

Input (feature) layer

\

The direction of diffusion

greater the deformation of the lattice, the lower the
scaled similarity. The lower the scaled similarity, the
more difficult it was for human observers to judge that
two images were of the same person.
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The Lades et al. (1993) system
as an object recognizer

As effective as the Lades et al. (1993) system is as a face
recognizer, the model evidences shortcomings as an ob-
ject recognizer in that it does not distinguish among the
largest effects in object recognition. One such effect is the
difference in the recognizability of contour-deleted
stimuli where the geons can or cannot be recovered from
the image, as shown in Fig. 8 (Kalocsai & Biederman,
1997). Whereas with sufficient exposure duration, re-
coverable stimuli can be recognized nearly perfectly,
median accuracy of recognition of nonrecoverable stim-
uli is zero. Fiser et al. (1997) investigated whether the
Lades et al. system would reveal this difference in rec-
ognizability. The intact versions of each of the 48 images
from Biederman (1987) were used as the gallery. The
similarity of the recoverable and nonrecoverable to the
intact versions was then assessed with the Lades et al.
system. Figure 8 shows an example of this matching.
Overall, there was no difference in the similarity of re-
coverable and nonrecoverable images against the intact
versions, indicating that the system was completely in-
sensitive to the contour variations that produce the
enormous psychophysical difference in recognizability.

The Lades et al. (1993) system is also insensitive to
another aspect of shape representation: the greater sa-
lience of nonaccidental differences in shape compared
to metric differences, as illustrated in Fig. 1 from the
Cooper and Biederman (1993) experiment. Compared to
the “original” object, the differences in aspect ratio were
made to be moderately greater that the differences in
geons, as assessed by the Lades et al. system. Despite the
greater similarity of the geon changes, matching two
images differing in a geon, such as a cylinder-base lamp
and a brick-base lamp as “lamps,” resulted in longer
RTs and higher error rates than matching two images
with a part differing only in aspect ratio.

What is the justification for using the Lades. et al.
(1993) system as a scaling device for “‘early” represen-

tations of shape similarity between objects? The model
captures essential aspects of the multiscale, multiori-
entation filtering within circumscribed receptive fields
that is characteristic of the tuning of many of the cells
in the earlier cortical stages in the ventral pathway
(viz., V1, V2, and V4). In this sense, the model offers a
scaling device for determining the spatial similarity of
shapes as specified in the earlier stages. The Lades et al.
system, however, is insensitive to the information that
is specified by the representations mediating object
recognition, such as edges, parts, and nonaccidental
properties (Biederman, 1987). This information is pre-
sumed to be made explicit in stages subsequent to
those that are performing spatial filtering, perhaps as
specified by the complex feature cells described by
K. Tanaka (1993). The stage analysis here is not strict:
Kobatake and Tanaka (1994) showed that in areas V2
and V4 there are some complex feature cells coexisting
with the spatially tuned cells which predominate in
those areas.

Consistent with the preceding interpretation of the
role of Gabor-jet similarity in human shape recognition
were the results of a physical identity, simultaneous
object matching experiment of Cooper and Biederman
(1993), which contrasted with the results of the sequen-
tial, conceptual matching experiment in the investigation
described previously. In this experiment, subjects viewed
a display of two object pictures (the same object images
as in the sequential name matching experiment described
earlier) presented at diagonal quadrants of the display,
so subjects could not use simple symmetry as a cue to
same trials. The objects always had the same name, but
the subjects had to judge whether they were physically
identical or not. On half the trials the images were
identical. On the other half, they differed by a geon (each
with the same aspect ratio) or in the aspect ratios of the
same geon. On the different trials, subjects were faster at
detecting the aspect ratio differences than the geon dif-
ferences, in line with the similarity scaling from the
Lades et al. (1993) model which, as noted previously,

Fig. 8 Examples of the grid
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Fig. 9 Four examples of the free-form shapes from Shepard and
Cermack (1973). The numbers superimposed over the shapes indicate
the similarity values as calculated by the Lades et al. (1993) system of
each of the shapes (4, C, and D) to shape 4. Higher values indicate
greater similarity

assessed the differences in aspect ratio to be greater than
the differences in geons. This task could presumably be
done with a representation that could be specified solely
by a spatial filter representation because (a) the task
required no memory, as the to-be-compared images were
presented simultaneously, and (b) the task required no
object classification, as the subjects only had to judge
physical identity of objects from the same class. That the
results of the simultaneous physical matching task were
consistent with the Lades et al. similarity orderings —
easier detection of aspect ratio differences than geon
differences — provides some confirmation of the rele-
vance of this model as a scaling device for early shape
representations.

Spatial-filter similarity and stimuli not distinguished
by GSDs

Even stronger evidence for the relevance of the Lades
et al. (1993) model as a scaling instrument for early
shape representations is provided by a recent study by
Biederman & Subramaniam (1997) in which subjects
performed physical same-different judgments on pairs of
sequentially presented free-form, asymmetrical, blobby
novel shapes devised by Shepard and Cermack (1973)
and illustrated in Fig. 9. Shepard and Cermack gener-
ated 81 of these shapes by varying two parameters to
produce a toroidal two-dimensional space (‘“‘toroidal”
because the space curves around onto itself). Biederman
and Subramaniam reported that the correlation between
Lades et al. similarity values, illustrated in Fig. 9, for
pairs of shapes which had similarity values greater than
82 and RTs and error rates on different trials was .95
and .96, respectively. The similarity values were taken to
be a percentage of the maximum similarity for a pair of
identical shapes, which would be 100. Maximum simi-
larity for a pair of different shapes was 95. For example,
subjects would be slower to judge that A and B in Fig. 9,
with a similarity of 95, were different stimuli compared
to A and C, with a similarity of 89. That is, without any
free parameters, the similarity values generated by the
Lades et al. model provided an excellent measure of
psychophysical similarity of complex shapes. The value
of 82 turned out to be the point below which subjects in
Shepard and Cermak’s experiment started to reliably
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report qualitative differences between pairs of shapes.
When Biederman and Subramaniam ran an experiment
that included the full range of shapes (down to a mini-
mum similarity of 68 between a pair of shapes), the re-
sults were clearly bilinear, with values below 82 showing
only a weak correlation between wavelet similarity and
RTs and error rates (which were near or at 0%). In-
spection of the stimuli revealed that dissimilar shapes
typically had nonaccidental differences, such as the left
lobe being tapered to a rounded end in one shape, as
in A in Fig. 9, and parallel to a squarish end in another,
as in D.

Spatial filter similarity and stimuli
that do differ in GSDs

This extensive treatment of a domain where the Lades
et al. (1993) system does provide a good account of
psychophysical similarity should not obscure the fact
that such conditions will be rare in noncontrolled set-
tings. As noted earlier, almost always some nonacci-
dental differences will exist in discriminating among
highly similar entities, and it will be rare that an ob-
server has to appeal to a wavelet type of representa-
tion.

Geon versus irregular part differences. The Cooper et al.
(1995) object name-matching experiment described
previously (Fig. 2) had a design similar to that of
Cooper and Biederman’s (1993), except that instead of
the stimuli varying in aspect ratio, the stimuli could
vary in the contours of an irregular part (that resem-
bled, somewhat, the 1973 Shepard and Cermack shapes
shown in Fig. 9). The magnitude of the difference in
irregularities were scaled by the Lades et al. (1993)
system to be slightly more dissimilar than the differ-
ence in the regular parts. Despite the greater wavelet
dissimilarity of the irregular parts, a change in a geon
resulted in far more disruption in judging that the two
objects had the same name than did a change in the
shapes of the irregular parts. In fact, there was no
effect of a change in the shape of an irregular part.
This result thus parallels that of Cooper and Bieder-
man’s in showing that when performing object classi-
fication, nonaccidental differences (viz., a difference in
geons) are far more salient than differences in metric
properties or variations in irregular shapes. This study
also replicates the Cooper and Biederman result in
showing that the Lades et al. Gabor-jet type of simi-
larity measure does not account for psychophysical
similarity in object recognition. Specifically, contour
variation that is part of a highly irregular region is
likely regarded as texture rather than an aspect of
shape that is specified in a representation of an object.
It is not that the texture itself is not noted. Biederman
and Subramaniam (1997) also showed that there was
considerable disruption in matching if the change was
from a regular part shape to an irregular part shape or
vice versa.
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Can smooth continuation account for the advantage of
recoverable over nonrecoverable images and the equiva-
lence of complementary feature images? For the recov-
erable images in the recoverable-nonrecoverable studies
(Biederman, 1987) and the complementary image studies
(Biederman & Cooper, 1991a), contour was often de-
leted in the middle of a segment. It will be recalled that
Fiser et al. (1997) showed that the Lades et al. (1993)
model did not distinguish recoverable from nonrecov-
erable images but did distinguish original and comple-
mentary images. Could a simple routine for smooth
continuation produce a large advantage for the recov-
erable images with respect to their similarity to the
original intact images and render complementary images
equivalent? Kalocsai and Biederman (1997) assessed the
Lades et al. similarity of recoverable-nonrecoverable
images to the original intact versions and the comple-
mentary image pairs to each other after an extension
field was applied to the Gabor kernels. The extension
field extends the direction of activation of each of the
kernels so that a kernel that is centered in the gap cre-
ated by midsegment deletion would receive activation
from both sides. The magnitude of the extension acti-
vation was Gaussian tuned and fell away with differen-
ces in orientation.

Imposition of an extension field did increase the
similarity of the recoverable images to the original intact
versions but not necessarily enough to account for the
extraordinary differences in identifiability. The advan-
tage of recoverable over nonrecoverable is maintained
even when half of the recoverable image is deleted.
Under such conditions, the Lades et al. (1993) model
would assess the nonrecoverable image as more similar
to the original. For both narrow (£15°) and wide (+£45°)
extension fields, only about a third of the differences
between complementary images could be accounted for
by smooth continuation.

Neural net implementation of extracting GSDs
from objects

Hummel and Biederman’s (1992) neural net implemen-
tation of geon theory (Fig. 10) can provide a framework
for understanding how an invariant structural descrip-
tion can be extracted from the image of an object. At the
top layer of the model (layer 7), individual units repre-
sent an invariant perceptual description of the object in
terms of a binding of one or more units in layer 6. (The
invariance holds over part aspects, i.e., the same repre-
sentation will be activated as long as the same parts can
be readily discerned in the image.) Each layer 6 unit
represents a geon feature assembly (GFA), which binds
the output of units representing a single geon, the at-
tributes of that geon (e.g., aspect ratio, 2-D orientation),
and the pairwise relations of that geon to other geons,
such as Above, Larger-than, End-to-end connected. The
units in L7 compete to self-organize to a particular
pattern of output from L6 in that connections from a

given L6 pattern to a particular L7 cell are strengthened
if the cell fires shortly after the presentation of the L6
pattern. The details of this self-organization are beyond
the scope of this paper, but a competitive function
within L7 is a “vigilance parameter” (Grossberg, 1986),
which tends to strengthen the inhibition from the max-
imally active L7 cell to other activated L7 cells. This
produces a ‘“‘winner-take-all” effect in that the most
strongly activated unit succeeds in coding a given pat-
tern of L6 output. Thus, two non-identical images from
two instances of the same basic-level class with highly
similar GFAs would tend to activate the same L7 unit.
Very different GFAs, even if the objects had the same
basic level name, would tend to activate different L7
units. One way in which slightly dissimilar instances of
a basic-level class, i.e., different subordinates, might
become differentiated is to suppress the inhibition from
the most strongly activated L7 cell. This would allow
more weakly activated cells to strengthen their connec-
tions to different subordinate patterns of L6 cells.

In this network, primal access corresponds to the
activation of an L7 cell, which will generally be driven
by a particular GSD. Two different L7 cells could be
associated with the same name, but this point should not
obscure the fundamental assumption that primal access
would be at the level of a distinctive GSD.

As noted earlier, GSDs assume the same input layer
(viz., a lattice of multiscale, multioriented filters), as
assumed by template theories, but activate intermediate
representations that make explicit the part structure
(e.g., geons and the relations among geons) based on
edges marking orientation and depth discontinuities and
a NAP specification of these edges (e.g., Hummel &
Biederman, 1992). There are two major differences be-
tween the two classes of theories:

1. In the deformable templates models, the connec-
tion weights to the units in the hidden layer are learned
during the course of the experiment for that particular
set of stimuli, whereas in the invariant parts models, the
routines by which part structures and viewpoint-invari-
ant properties are determined are assumed to have been
developed over the course of infancy or evolution and
are thus largely invariant to the particular set of stimuli
that are selected for the experiment. Attentional pro-
cesses, however, may allow selectivity to particular
stimulus attributes.

2. In the deformable templates models, a coordinate
space for the location of the various features is pre-
served. The relative positions of the features are implicit
in their positions in the coordinate space. Transforma-
tions are required to achieve translation or scale in-
variance, and an additional theory would be posited to
allow verbal description of the object, for example, “‘the
shade is above the base.” In the invariant parts theories,
a structural description is activated that has relation
units that explicitly specify the relations, such as top-
of, among the parts. Mapping to language requires no
additional perceptual processing. As the structural
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Fig. 10 The architecture of the Hummel and Biederman (1992)
neural net implementation of geon theory indicating the representa-
tion activated at each layer by the image in the Key. In Layers 3 and
above, large circles indicate cells activated in response to the image,
and dots indicate inactive cells. Cells in Layer 1 represent the edges
(specifying discontinuities in surface orientation and depth) in an
object’s image. Layer 2 represents the vertices, axes, and blobs defined
by conjunctions of edges in Layer 1. Layer 3 represents the geons in an
image in terms of their defining dimensions: axis shape: straight or
curved; cross-section shape (X-Scn): straight (s) or curved (c); whether
the Sides are parallel (p) or non-parallel (n); coarse orientation (Orn.):
vertical (v), diagonal (d), or horizontal (/); aspect ratio: elongated
(long) to flattened (flat); Fine orientation (Orientation): vertical (v),
two different diagonals (d), and four different horizontals (),
horizontal position in the visual field (Horiz. Pos.): left (/) to right
(r); vertical position in the visual field (Vert. Pos.): bottom (b) to top
(2); and size: small (near 0% of the visual field) to large (near 100% of
the visual field). Layers 4 and 5 represent the relative orientations,
locations, and sizes of the geons in an image. Cells in Layer 6 respond
to specific conjunctions of cells activated in Layers 3 and 5; cells in
Layer 7 respond to complete objects, defined as conjunctions of cells
in Layer 6. It is the activation of a Layer 7 cell that would qualify for
primal access

description is invariant over changes in position or scale,
no transformations are required to achieve such invari-
ance. In addition, if the same surfaces are present in the
image, the representation will be largely invariant to
rotation in depth.

Tests of the subordinate-level hierarchy

The previous sections have suggested a hierarchy for
distinguishing among subordinate-level entities in which
large-scale GSDs (Case 1), if not sufficient, are employed
to determine the locus of a small-scale GSD (Case 2)
and, if necessary, finer metric information (Case 3).
Would such a hierarchy reflect the similarity space when
observers were attempting to identify stimuli in a large
and varied set of objects? Specifically, would trained
observers attempt difficult part discriminations only to
the degree that easier discriminations (viz., of large
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Fig. 11 Illustration of the
mapping of jets onto fiducial
points (the vertices of the trian-
gles) on three images of the
same person at different orien-
tations and expressions. (From
Biederman & Kalocsai, 1997)

viewpoint-invariant differences) would suggest that they
would be diagnostic to a particular classification?
Would a similarity tree that made such an assumption
predict performance with a large and varied set of in-
stances?

O’Kane, Biederman, Cooper, and Nystrom (1997)
recently reported a test of such a subordinate-level
hierarchy. In this investigation, trained observers
attempted to identify military vehicles, 15 in one ex-
periment, 9 in another, from infrared images. An inv-
erted similarity tree (with the trunk on top) was
constructed in which the top level distinguished groups
of vehicles according to whether viewpoint-invariant
differences between large parts, such as tracks versus
wheels, were apparent. This top level thus constituted a
Case 1 discrimination. Depending on the outcome of the
first test, subsequent features, corresponding to Cases 2
and 3, could be selected for finer distinctions. At the
bottom of the tree were metric distinctions, such as long
versus short gun, which were only relevant for distin-
guishing among two of the vehicles.

The similarity tree was created subjectively, after
viewing high-resolution side views of each of the vehicles
at close range, without any knowledge of how the ve-
hicles appeared in the actual experimental trials where
they were shown at low resolutions, distant ranges, and
uncertain orientations. The observers, trained military
personnel who were familiar with viewing targets in in-
frared displays, were never instructed on the similarity
tree. Their pretraining simply consisted of viewing the
high-resolution, close-range photos. A measure of simi-
larity between a pair of vehicles was defined as the nodal
distance between the pair in the tree. The values ranged
from 1 to 9 for the 15-vehicle experiment and 1 to 7 for
the 9-vehicle experiment. The dependent variable was
the confusion rate as a function of nodal distance. In
both experiments, the rate of confusions between a pair
of vehicles correlated .97 with a negative exponential of
the nodal distance between vehicles!

Face recognition

Biederman and Kalocsai (1997) have recently argued
that the pairwise similarity values for human faces, as

determined by the Lades et al. (1993) system, are psy-
chophysically valid. They reported an experiment in
which subjects judged whether two briefly presented
pictures of faces, sequentially presented, were of the
same or a different person. The pairs of images on a
given trial were always of the same sex and approxi-
mately the same age, with no striking distinguishing
characteristics. The hairline — a potentially nonacciden-
tal shape cue available on a coarse scale — was occluded.
On both positive and negative trials, the expressions
could be the same or different (either neutral or angry).
The similarity values of a pair of faces were negatively
correlated with different RTs and error rates and posi-
tively correlated with same RTs and error rates.
Kalocsai et al. (1994) studied the effects of differences in
orientation in depth and expression in judging whether
two sequentially presented face pictures were of the same
or a different person (Fig. 7). They found a strong
negative correlation between the dissimilarity of the face
images according to the Lades et al. model and the error
rates and RTs in judging that the images were of the
same person.

Wiscott et al. (1997) have recently extended the Lades
et al. (1993) system so that each of the jets are centered
on a particular facial landmark, termed a fiducial point,
such as the left corner of the mouth, as illustrated in
Fig. 11. The assignment of jets to landmarks is done
automatically, based on a calibration sample of ap-
proximately 70 faces for which the jets were originally
assigned to fiducial points by hand. The jet diffuses to a
point that most closely matches one of the jets for that
fiducial point. The matching of the two representations,
the probe and an image in the gallery, is done in the
manner described by Lades et al. This version of the
face-recognition system shows great success, greater
than 95%, in matching an image of a face to a person in
a gallery of several thousand faces.” By the incorpora-
tion of different poses in the calibration set, as illustrated
in Fig. 11, the system has a capacity to recognize faces
over a wider range of poses than that shown by previous
systems.

"The system won a recent national U.S. competition among face
recognition systems (Phillips & Rauss, in press).



As noted previously, the Lades et al. (1993) system
fails to reflect some major effects apparent in object
recognition, such as the difference in recognizability
between recoverable and nonrecoverable images, as
noted by Fiser et al. (1997). Essentially, these short-
comings derive from characteristics of distinctive geon
structural descriptions — edges, parts, nonaccidental
properties, and relations among parts — that are not
made explicit in the direct matching of spatial filter ac-
tivation values assumed both by the Lades et al., and
Wiscott et al. (1997) systems. Would evidence for face-
like representations emerge if observers had to discrim-
inate between highly similar objects? In particular,
would a dependence on the original spatial filter values
be evidenced? Two results suggest that basic-level clas-
sification of objects is not dependent on the direct
matching of filter values. First, recall that the recover-
able and nonrecoverable images were equally similar to
the original, intact images with respect to those values
(Fiser et al., 1997) yet there was an enormous difference
in recognizability. Second, complementary pairs of
contour-deleted line drawings of common objects, in
which each member of a complementary pair had every
other vertex and line from each part deleted (so the
images of a pair, when superimposed, would make an
intact original image), primed the other member of the
pair as well as they primed themselves (Biederman &
Cooper, 1991b), despite considerable differences in
their similarity. (That is, the identical images had simi-
larity values of 100%, but the complements had val-
ues that were considerably less than that [Fiser et al.,
1997)).

Biederman and Kalocsai (1997) reported a direct test
of this possibility that matching for objects as well as
faces were performed with the filter values. They pre-
pared complementary pairs of images in the Fourier
domain of a set of gray-level images of highly similar
chairs and faces. The complements were created by
Fourier-filtering each original image into eight scales
(spatial frequencies, SFs) and eight orientations. Each
member of a complementary pair was assigned the
contrast of every other scale and orientation. If the 8
scales x 8 orientations were laid out as a checkerboard,
with the rows being the SFs and the columns being the
orientations, one member of each pair would be assigned
the red squares, and the other member the black squares.
Subjects performed a sequential matching task in which
they judged whether two sequentially presented images
were of the same chair (in one experiment) or the same
person (in another). The similarity of the images on
Different trials and the similarity of members of a
complementary pair (on Same trials) were approxi-
mately equal for the faces and chairs. Interest centered
on the Same trials, whereby on half of them the images
were identical and on the other half the images were
complementary. For chairs, there was absolutely no
difference between Identical and Complementary same
trials, despite the difference in kernel activation values.
For faces, there was a sizable increase in RTs and error

151

rates when matching complements, as opposed to iden-
tical images. The results of this experiment thus confirm
that the matching of faces is dependent on preservation
of the spatial filter values, whereas there is sizable in-
variance over these values for objects.

Actually, object priming reveals even more striking
invariance over specific filter values than was demon-
strated in the Biederman and Kalocsai (1997) experi-
ments. Whereas Biederman and Kalocsai used a
checkerboard arrangement in which all scales and ori-
entations were present in each member of a comple-
mentary pair, Fiser and Biederman (1995) created
complements in which one member of a pair was low-
passed and the other member high-passed, with an octave
separation between the spatial frequencies. Nonetheless,
there was invariance in the priming such that it made no
difference whether the primed image was identical to the
first or was of a different spatial frequency.

Conclusions and implications

Subordinate-level categorization should not be viewed
as a single, homogeneous process but as a form of visual
cognition that accommodates rich variation in the per-
ceptual processing that is required. Nonetheless, this
variation is more properly regarded as a variation in the
scale rather than in the kind of information that must be
distinguished. For the vast majority of subordinate-level
classifications, the classification is based on distinctive
GSDs. Except for faces, subtle metric differences rarely
form the basis of a subordinate class.

A Dbenefit of representing members of subordinate-
level classes in terms of geon structural descriptions is
that differences among the members can be readily
communicated. The representation of an object in terms
of its parts, their relations, and their viewpoint-invariant
properties — aspects of an image represented by GSDs —
appears to be not only fundamental for efficient view-
point-invariant perception, but readily accessible to
cognition and language.

That most important shape differences can be
expressed by GSDs means that GSDs can provide a
framework for training people on how to distinguish
among highly similar objects. Indeed, every identifica-
tion book on animals, birds, or leaves conveys the crit-
ical features as part of a hierarchical similarity tree. The
training of subordinate instances by GSDs allows in-
variant recognition despite rotation in depth and other
viewpoint variations. Different GSDs offer readily
available perceptual boundaries, whether or not a cul-
ture has chosen to coin common linguistic expressions
for these distinctions.
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