
Abstract

A recognition model which defines a measure of shape
similarity on the direct output of multiscale and
multiorientation Gabor filters does not manifest
qualitative aspects of human object recognition of
contour-deleted images in that: a) it recognizes
recoverable and nonrecoverable contour-deleted images
equally well whereas humans recognize recoverable
images much better, b) it distinguishes complementary
feature-deleted images whereas humans do not.  Adding
some of the known connectivity pattern of the primary
visual cortex to the model in the form of extension fields
(connections between collinear and curvilinear units)
among filters increased the overall recognition
performance of the model and:  a) boosted the
recognition rate of the recoverable images far more than
the nonrecoverable ones, b) increased the similarity of
complementary feature-deleted images, but not part-
deleted ones, more closely corresponding to human
psychophysical results.  Interestingly, performance was
approximately equivalent for narrow (±15û) and broad
(±90û) extension fields.  The desribed method is most
promising for the processing of noisy input images.

1 Introduction

A task that both biological and artificial vision
systems have to solve is to recover boundaries of objects
from many times imperfect, noisy input.  The Gestalt
grouping principles of co-curvilinearity, proximity,
constancy of curvature can help recovering meaningful
information under these circumstances.  There is
considerable evidence from neuroscience [4] and
psychophysics [3] that these grouping principles are built
into the mammalian visual system in the form of
connectivity patterns among processing units.
Anatomical and physiological data suggests a relatively
narrow connectivity pattern among approximately
collinear units [4], whereas psychophysical results seem
to suggest a broader field of connections between not only
collinear, but also curvilinear ones [3].  For either the
narrow or the broad fields, the excitatory connections
reveal smoothly decreasing strength with increasing
distance and curvature differences. The smoothly decaying
excitatory field around an oriented segment is referred to
as an extension field in this paper.  To compare the effects
of both narrow (collinear) and broad (collinear and

curvilinear) connectivity patterns among processing units
we decided to implement  two versions of the extension
field: a narrow and a broad one.  In the absence of precise
neurophysiological data for the strength of connections
between collinear and curvilinear units we choose the
algorithmic definition of narrow and broad extension fields
to be an excitatory gradient +/-15 and +/-90 degrees
respectively centered on an oriented segment.  

The goal of the present study was to investigate the
consequences of adding extension fields to a recognition
model that computes shape similarity based on
representations of V1 hypercolumn activity.  Specifically,
we studied whether the extension fields would increase the
resemblance of the recognition performance of the model
to that shown by humans.  

1.1 Brief comparison with previous work

Several previous computer vision models have used
extension field type algorithms to guide the grouping
process [5,6,7,9,11,12].  The main contribution in the
present effort is the implementation of such a scheme on a
biologically plausible multiscale and multiorientation
filter representation, roughly similar to that of a lattice of
V1 hypercolumns.  This representation also allowed a
measure of shape similarity whereas the previously cited
efforts did not result in that type of measurement. Another
difference is that previous studies in the grouping
literature used only one scale as opposed to our multiscale
approach.  Also many of those works [9,11] used  an
iterative relaxation algorithm as opposed to the more
biologically plausible one-pass operation which was
implemented here.  An additional feature of the current
study is that it directly compared the recognition
performance of a grouping model to that of humans on a
large number of test images, which is relatively rare in the
literature. In the following we will describe two
experiments on object recognition and compare human
data to the performance of our baseline model.

1.2 Human experimental results and comparison of
performance with the baseline model

In a psychophysical experiment [1] equal amount of
contour was deleted from line drawings in such a way that
the parts were either recoverable or nonrecoverable as
illustrated in Figure 1.  Subjects were able to recognize
recoverable versions, but not nonrecoverable ones. A
model [8] based on the direct output of a number of
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columns of multiscale and multiorientation Gabor filters
(each column is roughly analogous to the simple cells in
a V1 hypercolumn) was tested on the same images.    The
model recognized the nonrecoverable images as well as
the recoverable ones, a result that does not correspond to
human data (see results later).   

In another task, subjects named briefly presented
contour-deleted images [2].  For each image, two sets of
complementary pairs were created by deleting every other
vertex and edge from each simple part in the first set
(feature-deleted) and by deleting approximately half the
components from each image in the second set (part-
deleted) (Figure 2).  If the members of the complementary
feature-deleted pair or the part-deleted pair were
superimposed they would provide an intact image
without any overlap in contour.

Members of a complementary feature-deleted image
pair (Figure 2. left) were equivalent to each other for
human subjects as tested with the priming paradigm [2],
but not for the model since the similarity of members of a
pair was markedly lower than that for identical images.
Part-deleted complementary images (Figure 2. right) were
not equivalent neither to humans nor to the model.    

Figure 1. Examples of intact (left), recoverable (middle)
and nonrecoverable (right) test images [1].

          

Figure 2. Examples of feature-deleted complementary
image pairs (left) and part-deleted complementary image
pairs (right).   

2 Improving the baseline model

Based on the known connectivity pattern of the visual
cortex as revealed by physiological [4] and
psychophysical [3] studies extension fields were
implemented as additions to the original direct mapping
model of filter activations.

The extension field is essentially a probability
directional vector-field describing the contribution of a
single unit-length edge element to its neighborhood in
terms of direction and strength [6].  In other words, it
describes the preferred direction and the probability of
existence of every point in space to share a curve with the
original segment.  The field direction at a given point in
space is chosen to be tangent to the osculating circle
passing through the edge element and that point, while
its strength is proportional to the radius of that circle
[9,11].  Also, the strength decays with distance from the
origin (the edge segment).

The decay of extension field strength is set to be of
Gaussian nature for both the proximity and curvature
constraints:

EF(x,ρ) = e− Ax 2

e− Bρ 2

                    (1)

where x  is the distance along the circular arc and ρ  is
the curvature of the given arc.

The maximum orientation difference spanned by the
broad extension field was ±90û, which were at the ±45û
boundaries of the extension field (Figure 3).  Beyond
those values, the Gaussians for orientation were set to
zero so the broad extension fields had zero values above
and below the main diagonals, as illustrated in Fig. 3.
The narrow extension field is a subset of the broad
extension field in that it uses the same direction and
strength fields except that the excitation area is limited to
±15û orientation difference.  The absence of grouping
activity in the regions outside of the extension field
merely means that additional information is needed to
reconstruct curves between such pairs.  

  

Figure 3. The color coded directional map of the
extension field given the horizontal edge element in the
middle. Black refers to horizontal  and white to vertical
orientations (left).  The strength map of the extension
field for locations and directions shown on the left figure
(right).   



The extension fields were incorporated into the
baseline model by allowing a field to operate on each of
the 24 activation fields created by convolving the 24
kernels with an image.  Because there were 8 orientations
for the activation fields there were also 8 orientations for
the extension fields. The additional excitation as provided
by the extension field was distributed to the activation
fields in such a manner that only the corresponding
orientations of the activation fields and extension fields
were convolved:

(EFWI)(l , x0 ) = EF∫ l
(x0 − x )WI

l
(x )d 2 x = EF

l
* WI

l

(2)

where l  gives the orientation of both the extension and
activation fields.  For the broad extension field model the
activation fields not only get excitation from the
extension field with the same orientation, but also from
all the other orientations. For computational ease the
excitation fields were divided into 8 subregions based on
orientation and only the corresponding range of
orientations were applied to an activation field with a
given orientation.  In the narrow extension field model
the activation field with a given orientation was only
convolved with the excitation field having the same
orientation.

Figure 4 provides a direct visual comparison of the
workings of the three different model types. The top row
displays three versions of the 'boat' image from the set:
intact, recoverable and nonrecoverable in left, middle and
right columns respectively. Below the 3 x 9 blocks of
images show the cumulative activation patterns induced
by the three images in the three examined models:
baseline, with narrowly and broadly tuned extension
fields (from top nine image to bottom nine).  In each of
the three nine image blocks the first row represents the
cumulative activation patterns of the kernels at the highest
scale and at all 8 orientations. The second row represents
the cumulative response at the highest and medium scale
and the last row shows the 'total' of the activation for all
scales and all orientations. This visualization of model
activation also shows that for the second and third block
of nine images (model with narrow and broad extension
fields) the activation patterns for intact and recoverable
images are much more similar than for the baseline model
(first block of nine images).  

3 Simulation setup

In the recoverable-nonrecoverable experiment the
similarity of 36 intact images with the recoverable and
nonrecoverable versions (altogether 108 images) was
calculated and compared to each other.  In the feature-
deleted vs. part-deleted experiment the similarity of the
feature-deleted complementary image pair was compared
to the similarity of the part deleted complementary image
pair for 18 images (altogether 72 used).

Figure 4. Cumulative activation patterns of the three
model types to a set of intact, recoverable and
nonrecoverable images

4 Result of the simulations

The results of the simulations are displayed on
Figures 5 and 6.  The addition of horizontal connections
between similarly oriented kernels increased the similarity
of both the recoverable and nonrecoverable versions to the
original intact image, although it increased the similarity



of the recoverable version more.  As a result the addition
of horizontal connections significantly increased the
difference between the similarity of recoverable and
nonrecoverable types. The addition of broad extension
fields further improved similarity for recoverable images,
but did not improve similarity for the nonrecoverable ones
compared to the narrow extension fields.

The addition of narrow and broad extension fields
significantly increased the similarity of feature-deleted
complementary images pairs, but did not improve the
similarity of the part-deleted pairs.  The addition of the
broad extension field did not improve similarity for
feature-deleted images compared to the narrow extension
fields.
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Figure 5. Average similarity values for matching the
original intact images with the recoverable and
nonrecoverable versions in the three model types.
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Figure 6. Average similarity values for matching
complementary feature-deleted pairs and complementary
part-deleted pairs in the three model types.

5 Conclusions

The addition of extension fields to a baseline model of
object recognition that operates on the output of
multiscale and multiorientation Gabor filters improves its
overall recognition performance (at minimum for the given
set of images) and brings its performance significantly
and qualitatively closer to that of human object
recognition.

Interestingly, adding broad extension fields to the
original model did not improve its performance
significantly beyond the improvement already achieved by
narrow extension fields.

An obvious direction for future research is to
incorporate inhibition and endstopping into the
connectivity pattern of the model, both well known
characteristics of biological low level vision systems, and
to test the model on gray-level images as well.
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