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Abstract

A recognition model which de®nes a measure of shape similarity on the direct output

of multiscale and multiorientation Gabor ®lters does not manifest qualitative aspects of

human object recognition of contour-deleted images in that: (a) it recognizes recover-

able and nonrecoverable contour-deleted images equally well whereas humans recognize

recoverable images much better, (b) it distinguishes complementary feature-deleted

images whereas humans do not. Adding some of the known connectivity pattern of the

primary visual cortex to the model in the form of extension ®elds (connections between

collinear and curvilinear units) among ®lters increased the overall recognition perfor-

mance of the model and: (a) boosted the recognition rate of the recoverable images far

more than the nonrecoverable ones, and (b) increased the similarity of complementary

feature-deleted images, but not part-deleted ones, and thus attained a closer corre-

spondence to human psychophysical results. Interestingly, performance was approxi-

mately equivalent for narrow ��15°� and broad ��90°� extension ®elds. Ó 2000

Published by Elsevier Science Inc. All rights reserved.

1. Introduction

A task that both biological and arti®cial vision systems need to solve is
recovering boundaries of objects from input that is often noisy and imperfect.
The Gestalt grouping principles of co-curvilinearity, proximity, and constancy
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of curvature can help the recovery of meaningful information under these
circumstances. There is considerable evidence from neuroscience, e.g. [6], and
psychophysics, e.g. [4], that these grouping principles are built into the mam-
malian visual system in the form of connectivity patterns among processing
units. There is both anatomical and physiological evidence that cells with ap-
proximately collinear orientation are interconnected primarily by excitatory
connection [6,7,17]. Psychophysical results seem to suggest a broader ®eld of
connections, between not only collinear units, but also curvilinear ones [4]. For
either the narrow or the broad ®elds, the excitatory connections reveal
smoothly decreasing strength with increasing distance and curvature di�er-
ences [4,7,15]. 1 The smoothly decaying excitatory ®eld around an oriented
segment is herein referred to as an extension ®eld. 2 To compare the e�ects of
both narrow (collinear) and broad (collinear and curvilinear) connectivity
patterns among processing units, two versions of the extension ®eld were im-
plemented narrow and broad. In the absence of precise neurophysiological
data about the strength of connections between collinear and curvilinear units
we choose the algorithmic de®nition of narrow and broad extension ®elds to be
an excitatory gradient of �15 and �90°, respectively centered on an oriented
segment.

The goal of the present study was to investigate the consequences of adding
extension ®elds to a recognition model that computes shape similarity based on
representations of V1 hypercolumn activity. Speci®cally, we studied whether
the extension ®elds would increase the resemblance of the recognition perfor-
mance of the model to that shown by humans.

1.1. Brief comparison with previous work

Several previous computer vision models have used extension ®elds to guide
the grouping process [8±10,14,16,18]. The main contribution of the present
e�ort is the implementation of such a scheme on a biologically plausible
multiscale and multiorientation ®lter representation, roughly similar to that of
a lattice of V1 hypercolumns. This representation allows a measure of shape
similarity based on the combined activity produced by both the input image
and the grouping process (although this does not necessarily mean that

1 There is also evidence for facilitation (increase in sensitivity for detecting Gabor patches) when

local and global orientations are 90° o�set (the virtual line connecting two segments is

perpendicular to their orientation) which is not modeled here [4,15].
2 The terms `association ®eld' or `stochastic completion ®eld' can be found in the literature to

refer to similar constructs. These terms are generally applied to ®elds considered to manifest broad

tuning. The term `horizontal connections' has been employed to refer to the more narrowly tuned

excitatory connections documented for neural units.
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grouping results in activity that is indistinguishable from that produced by the
original image). Previously e�orts have not measured the e�ect of grouping on
shape similarity.

Other di�erences distinguishing the present e�ort from prior ones are that
the latter studies used only one scale as opposed to our multiscale approach.
Since our test images are line-drawings, only one scale size ± chosen to be the
width (frequency) of the lines ± could have very well been used, but a multiscale
representation better resembles the sampling properties of biological vision
systems. Many of the studies in the grouping literature, e.g., [14,16] use an
iterative relaxation algorithm as opposed to the more biologically plausible
one-pass operation that was implemented here. An additional feature of the
current study is that it directly compares the recognition performance of a
grouping model to that of humans on a large number of test images, which is
relatively rare in the literature. In the following we describe two experiments on
object recognition and compare human data to the performance of our baseline
model.

1.2. Human experimental results

In a psychophysical experiment [1], equal amounts of contour were deleted
from line drawings in such a way that the parts (geons) were either recoverable
or nonrecoverable, as illustrated in Fig. 1. Subjects were unable to name the
nonrecoverable stimuli (median accuracy was 0%) even when given the names
of the objects prior to the experiment. Given su�cient exposure duration the
naming of the recoverable images was almost perfect. Thus the type of contour
deletion produces an enormous e�ect on recognition.

In a name priming task, subjects named brie¯y presented contour-deleted
images in two blocks of trials [2]. For each image, two sets of complementary
pairs were created by deleting every other vertex and edge from each simple
part in the ®rst set (feature-deleted) and by deleting approximately half the
components from each image in the second set (part-deleted) (Fig. 2). In this
way each of the four images contained 50% of the original contour. If the
members of the complementary feature-deleted pair or the part-deleted pair
were superimposed they would provide an intact image without any overlap in
contour.

For feature-deleted images, members of a complementary pair primed each
other as well as they primed themselves, as evidenced by equivalent facilitation
in RTs and error rates on the second block of trials [2]. However, there was no
visual priming for part-deleted complementary images. Presumably in the case
of feature-deleted pairs the same simple parts could be activated by either
member of a complementary pair (through di�erent image features though),
but this was not possible for complementary part-deleted pairs.
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Fig. 2. Left panel: Examples of feature-deleted complementary image pairs. Every other vertex and

edge is deleted from each part. With a very long line, as with the bottom line on the long cylinder of

the ¯ashlight, half the line was allocated to one member of a complementary pair and the other half

to the other. Right panel: Examples of part-deleted complementary image pairs. Each member

contains approximately half the parts of the object.

Fig. 1. Examples of test images with recoverable and nonrecoverable deletions. The left column

shows the intact images. The middle column shows the recoverable versions and the right column

shows the nonrecoverable ones with the same amount of contour deleted [1]. The recoverable

objects remain recognizable even if their left halfs are occluded so they contain half the contour of

the nonrecoverable images. This can be readily veri®ed by the reader.
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1.3. Comparison of performance with the baseline model

The extent to which these experimental results could be accounted for by a
matching algorithm based on the direct output of a number of columns of
multiscale and multiorientation Gabor ®lters was tested [5]. Each column is
roughly analogous to the simple cells in a V1 hypercolumn (as described later).
On average the model recognized the nonrecoverable images as well as the
recoverable ones, a result that did not correspond to human data. Compared to
humans the system performed much too well on the nonrecoverable images.

The model was also tested on the recognition of feature-deleted comple-
mentary image pairs [5] (Fig. 2). Identical images were recognized perfectly.
Although the complementary images were recognized also well above chance,
their recognition accuracy was markedly lower than that for the identical im-
ages. Unlike humans, who do not distinguish between members of a part-
complementary pair in an object recognition task for feature-deleted images,
the system clearly recognized the identical member much better than the
complement.

2. General structure of the baseline direct mapping model

The baseline model [13] was originally developed for face recognition. It has
achieved high accuracy in recognizing faces from several face databases and
continues to be a success as a commercial application on the access control
market [12]. The following sections describe the representation and matching
of the model.

2.1. Representation

First we convolve the image I�~x�, with a bank of ®lters.

�WI��~k;~x0� �
Z

w~k�~x0 ÿ~x�I�~x�d2x � w�~kI : �1�

The ®lters form a self-similar family of Gabor functions which are known
under the name of ``Morlet wavelets'' in the literature and have the general
form

w~k�~x� � ck;r exp

 
ÿ
~k2~x2

2r2

!
exp�j~k~x�; �2�

where ck;r is a constant and~k controls the size of the Gaussian window and the
frequency and orientation of the kernel (since the test images are line drawings,
only the cosine part of the kernels are used). The constant parameter r assures
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that the ratio of the wavelength and the window size is such that in all cases the
shape of the Gabor kernels are similar, and resemble the simple cell receptive
®eld pro®les found in V1 [3,11].

The result of the convolution is stored in ``memory'' for only certain posi-
tions on the image (at the vertices of an arbitrary lattice, 10 � 10 in our case).
The convolution of the input image with a set of Gabor kernels is shown on
Fig. 3. In the current study 3 scales, 8 orientations and a 10 � 10 lattice were
used although these numbers can arbitrarily be varied. The particular choice of
these parameters was based on the characteristics of the stimuli, accuracy
considerations, and computational demands. Since the test images are line-
drawings one scale could have been su�cient for testing except that in this case
one loses the notion of sampling the frequency space which is also character-
istic of biological vision systems. The positioning of the 10 � 10 lattice over an
image is shown in the left-hand column of Fig. 4. The result of the convolution
with all 24 (3 scales � 8 orientations) kernels at the same position gives a 24
dimensional vector called a ``jet''. This describes how much luminance changes
of di�erent orientation and scales are present at a given point in the image. The
convolution results for all vertices of the grid along with their positions are
stored for each image to form a ``gallery''.

Fig. 3. Schematic representation of the baseline Gabor ®lter model. The model ®rst convolves each

input image with a set of Gabor kernels at three scales and eight orientations arranged in a 10� 10

lattice. The set of kernels at each node in the lattice is termed a ``Gabor jet''. The activation values

of the kernels in each jet along with their positions are stored for each of the images to form a

``gallery''.

46 P. Kalocsai / Information Sciences 126 (2000) 41±56



2.2. Matching

The comparison of a stored image representation with a new incoming
image involves two measurements: determining the similarity between stored
jets and jets computed in the new image �Sv�, and measuring the necessary
distortion of the grid in the new image in order to ®nd similar jets �Se�. Sim-
ilarity between an input jet �J I� and an output jet �J O�, labeled as �Sv�, is
measured by the normalized dot product of the two 24 dimensional jets

Sv�J I; J O� � ÿ J I � J O

kJ IkkJ Ok ; �3�

which gives the cosine of the angle between the two vectors. Certainly, other
types of similarity measure could have also been used, but after some experi-
mentation the cosine seemed to give su�cient result. The distortion of all the
edge segments between two neighboring nodes �Se� is measured by the qua-
dratic di�erence in lengths between corresponding edges in the input and the
stored image

Se�DI
i;j;D

O
i;j� � �DI

i;j ÿ DO
i;j�2; �4�

where Di;j is the distance between nodes i and j.
The graph matching occurs in the following manner. First the 24 dimen-

sional vectors (or jets) at each pixel of the input image are computed. Next, the
same grid that was used for the stored pattern is moved around rigidly on the
input image searching for the best initial position for the grid. Rigidity means
that the distance between two nodes of the graph does not change. The search

Fig. 4. Illustration of the grid distortions in the recoverable-nonrecoverable experiment. The left

column shows examples of the intact images that were stored in the gallery with the original grid

positioned on them. The middle column shows the distortion of the grid for the recoverable

and nonrecoverable versions of the `boat' image when matched against their intact versions. The

right-hand column shows the recoverable and nonrecoverable images without the grids.
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is performed by random walk gradient descent method with arbitrary but less
than a maximum step size. At each step a cost function is evaluated which is a
combined measure of jet similarities and the grid distortion.

The cost function is

Ct � k
X

i;j

Se�DI
i;j;D

O
i;j� �

X
i

Sv�J I
i ; J

O
i �; �5�

where k is a constant determining the relative importance of the two type of
costs, and i; j takes each possible integer values between 1 and the number of
horizontal and vertical vertices, respectively. When the grid is rigid, the ®rst
term in the cost function is zero. If the cost in the new position is lower than in
the old one, the grid is repositioned. Otherwise it remains in the old position.
After the optimal initial position is explored in this way, the second phase of
optimization begins where the individual nodes can ``di�use'' independently
constrained by topographical neighborhood. The nodes take a randomly se-
lected new position if by this step the cost function is reduced by more than a
prede®ned threshold. In this phase the grid gets distorted, therefore the ®rst
term in the cost function also contributes to the total cost. The process stops
when no improvement happens during a given number of trials. The energy
landscape of a local jet is smooth enough to allow the gradient descent method
to ®nd its minimum.

The result of the di�usion over a pair of images is shown in the middle
column in Fig. 4 (the test object without the distorted grids are presented in the
right-hand column. To the extent that the jets move independently, the resul-
tant positions will no longer produce a rectangular lattice, as illustrated in the
®gure. In general the more distorted the lattice, the less the similarity of the
image to the original. The most similar match of the test image is interpreted to
be the recognition response of the model. Figs. 5 and 6 give a visual illustration
of the activation ®elds (the responses of the individual kernels to an image)
created by convolving an image with the di�erently oriented and scaled kernels
in the baseline model (the intact and recoverable `boat' images are used as
examples). In the visual representation the activation values of the model are
normalized to integer values between 0 and 255 for 8-bit graphical display.

3. Additions to the baseline model

The extension ®eld is essentially a probability directional vector-®eld de-
scribing the contribution of a single unit-length edge element to its neighbor-
hood in terms of direction and strength [9]. In other words, it describes the
preferred direction and the probability of existence of every point in space to
share a curve with the original segment. The ®eld direction at a given point in
space is chosen to be tangent to the osculating circle passing through the edge
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element and that point, while its strength is proportional to the radius of that
circle (Fig. 7). Also, the strength decays with distance from the origin (the edge
segment). The decay of extension ®eld strength is set to be Gaussian for both
the proximity and curvature constraints

EF �x; q� � eÿAx2

eÿBq2

; �7�
where x is the distance along the circular arc and q is the curvature of the given
arc. Recently, Williams and Jacobs [18] described a very similar type of prior
probability distribution of boundary completion based on computing the
probability that a particle following a random walk will pass through a given
position and orientation on a path joining two edge segments.

Fig. 6. Activation ®elds of the baseline model to the recoverable `boat' image. The three rows

represent the three scale sizes used in the experiment. The ®rst column shows the two-dimensional

picture of the Gabor kernels at the three di�erent scales. From the second to the second to last

column the normalized activations of the di�erently oriented kernels to the recoverable `boat'

image are displayed starting with horizontal orientation and incrementing by 22.5°. The last col-

umn shows the normalized cumulative activation of the three di�erent scales at all orientations.

Fig. 5. Activation ®elds of the baseline model to the intact `boat' image. The three rows represent

the three scale sizes used in the experiment. The ®rst column shows the two-dimensional picture of

the Gabor kernels at the three di�erent scales. From the second to the second to last column the

normalized activations of the di�erently oriented kernels to the intact `boat' image are displayed

starting with horizontal orientation and incrementing by 22.5°. The last column shows the nor-

malized cumulative activation of the three di�erent scales at all orientations.
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From each end of an edge segment an extension ®eld is de®ned by the tri-
angular areas as shown in Fig. 8. Together, the two ®elds extending from each
segment form a butter¯y-shaped region. Activity that is collinear (� 0°) with
the segment ran through the center of each extension ®eld with orientations
that deviate from collinearity extending above and below the center. The
maximum orientation di�erence spanned by the broad extension ®eld is �90°,
which is at the �45° boundaries of the extension ®eld (Fig. 8). Beyond those
values, the Gaussians for orientation are set to zero so the broad extension
®elds had zero values above and below the main diagonals, as illustrated in
Fig. 8. The narrow extension ®eld is a subset of the broad extension ®eld in that

Fig. 7. Field direction for every point in space is chosen to be the tangent to the osculating circle

passing through the edge segment and the given point. With the broadly tuned extension ®eld, the

90° tangent would be at the�45° boundaries of the extension ®eld on both sides of the edge element

(Fig. 9 left panel).

Fig. 8. Left panel: The brightness coded directional map of the broad extension ®elds given a

horizontal edge element in the middle. Within the butter¯y shaped extension ®elds, black refers to

horizontal and white to vertical orientations. The regions above and below the edge element have

no assigned orientation and are shown in black to clearly deliniate the �45° boundaries of the

extension ®eld. Right panel: The strength map of the extension ®eld for locations and directions

shown in the left ®gure. Strength declines with increasing orientation di�erences and distance from

the edge element. There is no strength assigned above and below the diagonals.
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it uses the same direction and strength ®elds except that the excitation area is
limited to �15° orientation di�erences. The absence of grouping activity in the
regions outside of the extension ®eld merely means that additional information
is needed to reconstruct curves between such pairs.

The extension ®elds were incorporated into the baseline model by allowing a
®eld to operate on each of the 24 activation ®elds created by evolving the 24
kernels with an image. Because there were 8 orientations for the activation
®elds there were also 8 orientations for the extension ®elds. The additional
excitation as provided by the extension ®eld is distributed to the activation
®elds in such a manner that only the corresponding orientations of the acti-
vation ®elds and extension ®elds were convolved

�EFWI���l; x0� �
Z

EFl�x0 ÿ x�WIl�x� d2x � EFl � WIl; �8�

where l gives the orientation of both the extension and activation ®elds. For
the broad extension ®eld model the activation ®elds not only get excitation
from the extension ®eld with the same orientation, but also from all the other
orientations. For computational case the excitation ®elds were divided into
eight subregions based on orientation and only the corresponding range of
orientations were applied to an activation ®eld with a given orientation. For
the broad extension ®eld model the overall excitation applied to an activation
®eld is then given by summing up the excitation coming from: (a) the extension
®eld with the preferred orientation of the given activation ®eld and (b) the
excitation from all the other extension ®elds. In the narrow extension ®eld
model the activation ®eld with a given orientation was only convolved with the
excitation ®eld having the same orientation.

To anticipate a point that will be made in the discussion, the grouping ac-
tivity can be distinguished from the activity produced directly by the image by
keeping a reference copy of the early ®lter activations without any connectivity.

Fig. 9 shows the activation ®elds created by convolving an image with the
di�erently oriented and scaled kernels (altogether 24 kernels were used) with
the narrowly tuned extension ®eld connections (again the `boat' recoverable
images is used as an example). The activation pattern shows high similarity to
the activation pattern achieved for the intact `boat' image (as shown in Fig. 5).

Fig. 10 provides a direct visual comparison of the workings of the three
di�erent model types. The top row displays three versions of the `boat' image
from the set: intact, recoverable and nonrecoverable in left, middle and right
columns, respectively. Below the 3� 9 blocks of images show the cumulative
activation patterns induced by the three images in the three examined models:
baseline, with narrowly tuned extension ®elds, with broadly tuned extension
®elds (from top nine image to bottom nine). In each of the three nine image
blocks the ®rst row represents the cumulative activation patterns of the kernels
at the highest scale and at all 8 orientations. The second row represents the

P. Kalocsai / Information Sciences 126 (2000) 41±56 51



cumulative response at the highest and medium scale and the last row shows
the `total' of the activation for all scales and all orientations as well (similarity
to the last columns of Figs. 5, 6 and 9). This visualization of model activation
also shows that for the second and third block of nine images (model with
narrow and broad extension ®elds) the activation patterns for intact and re-
coverable images are much more similar than for the baseline model (®rst block
of nine images).

3.1. Simulations

In the recoverable±nonrecoverable experiment the similarity of 36 intact
images with the recoverable and nonrecoverable versions (altogether 108 im-
ages) was calculated and compared to each other.

In the feature-deleted vs. part-deleted experiment the similarity of the fea-
ture-deleted complementary image pair was compared to the similarity of the
part-deleted complementary image pair for 18 images (altogether 72 used).

3.2. Result of the simulations

The results of the simulations are displayed in Figs. 11 and 12. The addition
of narrowly tuned extension ®elds between similarly oriented kernels increased
the similarity of both the recoverable and nonrecoverable versions to the
original intact image, although it increased the similarity of the recoverable
version more. Whereas for the baseline model there was no di�erence between
the similarity of recoverable and nonrecoverable images t�35� � 0:64; P � 0:52
the addition of narrow extension ®elds signi®cantly increased the di�erence

Fig. 9. Activation ®elds produced by narrowly tuned extension ®elds for the recoverable `boat'

image (the model with broad extension ®elds gave similar results). The three rows represent the

three scale sizes used in the experiment. The ®rst column shows the two-dimensional picture of the

Gabor kernels at the three di�erent scales. From the second to the second to last column the

normalized activations of the di�erently oriented kernels to the recoverable `boat' image are dis-

played starting with horizontal orientation and incrementing by 22.5°. The last column shows the

normalized cumulative activation of three di�erent scales at all orientations.
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Fig. 10. The top row displays the intact, recoverable and nonrecoverable versions of an image

respectively. The 3� 9 block of images below the top row display the activation patterns of the

three model types (Baseline, Narrow Extension Fields, and Broad Extension Fields) to these im-

ages. The ®rst row in each three blocks represents the cumulative activation of the highest fre-

quency kernels at all eight orientations to the three images. The second row in each three blocks

shows the cumulative activation of the highest and medium frequency kernels at all orientations.

Finally, the third row in each blocks represents the cumulative activation of all three kernel sizes at

all orientations (all 24 kernels).
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between the similarity of recoverable and nonrecoverable types compared with
the original images t�35� � 4:8; P < 0:001. The addition of broad extension
®elds further improved similarity for recoverable images, but did not improve
similarity for the nonrecoverable ones compared to the narrow extension ®elds.
Consequently, the broad extension ®eld model further increased the di�erence
between the similarity of recoverable and nonrecoverable images compared
with the intact versions t�35� � 9:09; P < 0:001.

The addition of narrow and broad extension ®elds signi®cantly increased the
similarity of feature-deleted complementary images pairs, but did not improve
the similarity of the part-deleted pairs. The similarity of two complementary
feature-deleted images was already signi®cantly higher than of two comple-

Fig. 12. Average similarity values for matching complementary feature-deleted pairs and com-

plementary part-deleted pairs in the three model types.

Fig. 11. Average similarity values for matching the original intact images with the recoverable and

nonrecoverable versions in the three model types.
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mentary part-deleted ones t�17� � 3:04; P < 0:01, but the addition of hori-
zontal connections further improved this di�erence t�17� � 8:54; P < 0:001,
just as did the addition of extension ®elds t�17� � 9:12; P < 0:001. The fact that
similarity did not improve for part-deleted image pairs was expected consid-
ering that there was no any global knowledge provided that could relate the
two di�erent part structures in the pair to each other. However, the signi®cant
increase of similarity for the feature-deleted pairs was not an obvious outcome
of the simulation. The addition of the broad extension ®eld did not improve
similarity for feature-deleted images compared to the narrow extension ®elds,
which might be due to the large number of man-made objects in the stimuli set
with mostly straight contours.

4. Conclusions

The addition of extension ®elds to a model of object recognition that posited a
representation based solely on the output of multiscale and multiorientation
Gabor ®lters improved the model's overall recognition performance for contour-
deleted images. More important, whereas the model's performance previously
did not manifest qualitative aspects of human recognition of contour-deleted
images in that it recognized recoverable and nonrecoverable images equally well
and distinguished members of feature-deleted complementary pairs of images,
the activity contributed by extension ®elds brought performance closer to that of
human observers in that now the model had a higher recognition rate for re-
coverable compared to nonrecoverable images and the advantage of identical
over complementary feature-deleted images was signi®cantly reduced.

Interestingly, adding broad extension ®elds to the original model did not
improve its performance signi®cantly beyond the improvement already
achieved by narrow extension ®elds.

Some of the remaining di�erences between model and human might be
bridged by the incorporation of inhibition and endstopping into the connec-
tivity pattern, both well-known characteristics of early cortical visual activity.
The information from endstopping might be employed in making a number of
nonaccidental properties explicit, such as curvature, vertices, and cusps. This
information, in turn, might be employed in the activation of intermediate
representations that might endow the model to express some of the orientation-
in-depth robustness characteristic of human object recognition.
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