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INTRODUCTION

P
roducing microarray data starts
with scanning in the glass, gel or
plastic slides with a specialized
scanner to obtain digital images of

the results of an experiment after
hybridization. With the help of image
analysis software the DNA expression levels
are then quantified. After the image pro-
cessing and analysis step is completed we
end up with a large number of quantified
gene expression values. The data typically
represents hundreds or thousands, in cer-
tain cases tens of thousands, of gene
expressions across multiple experiments. To
make sense of this much information it is
unavoidable to use various visualization
and statistical analysis techniques. One of
the most typical microarray data analysis
goals is to find statistically significant up or
down regulated genes, in other words out-
liers or ‘interestingly’ behaving genes in the
data. Other possible goals could be to find
functional groupings of genes by discover-
ing similarity or dissimilarity among gene expression profiles, or
predicting the biochemical and physiological pathways of previ-
ously uncharacterized genes. 

SCATTERPLOT

Probably the simplest analysis tool for microarray data visualiza-
tion is the scatterplot. In a scatterplot each point represents the
expression value of a gene in two experiments, one plotted on the
x-axis and the other one on the y (Fig. 1).

In such a plot genes with equal expression values would line up
on the identity line (diagonal), with higher expression values fur-
ther away from the origin. Points below the diagonal represent

genes with higher expression in the experiment plotted on the x-
axis. Similarly, points above the diagonal represent genes with
higher expression values in the experiment plotted on the y-axis.
The further away the point is from the identity line the larger is
the difference between its expression in one experiment compared
with the other. 

Figure 1. Scatterplot of two experiments. Every point in the plot shows
the expression of a gene in the two experiments.

PRINCIPAL COMPONENT ANALYSIS

It is easy to see how the scatterplot is an ideal tool for compar-
ing the expression profile of genes in two experiments. Even three
experiments could be plotted and compared in a three dimension-
al scatterplot. What can we do though when more than 3 experi-
ments are to be analyzed and compared with each other? In case of
twenty experiments for example we can not draw a twenty dimen-
sional plot. Fortunately, there are techniques available in statistics
for dimensionality reduction, such as Principal Component
Analysis, that are able to compress the data into two or three
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dimensions (that we can plot) while preserving most or
all the variance of the original dataset. Fig. 2. is in fact a
3D plot of 600 genes in 21 experiments indicating the
scores of all 600 genes on the first three principal com-
ponents. Of course, lower ranked principal components
could also be plotted, three or less at a time, with the
understanding that they account for less and less of the
overall variance in the data.

This multivariate technique is frequently used to pro-
vide a compact representation of large amounts of data
by finding the axes (principal components) on which the
data varies the most. In principal component analysis the
coefficients for the variables are chosen such that the first
component explains the maximal amount of variance in
the data. The second principal component is perpendic-
ular to the first one and explains maximum of the resid-
ual variance. The third component is perpendicular to
the first two and explains maximum of the still remaining vari-
ance. This process is continued until all the variance in the data is
explained. The linear combination of gene expression levels on the
first three principal components could easily be visualized in a 3D
plot (Fig. 2). This method, just like the scatterplot earlier, provides
an easy way of finding outliers in the data, genes that behave dif-
ferently than most of the genes across a set of experiments. With a
transpose of the data-matrix the experiments could also be plotted
to find out possible groupings and/or outliers of experiments.
Recent findings show that this method should be able to detect
even moderate-sized alterations in gene expression (1,2). In gener-
al principal component analysis provides a rather practical
approach to data reduction, visualization and identification of
unusually behaving, outlier genes and/or experiments.  

PARALLEL COORDINATE PLANES

Two and three dimensional scatterplots and
principal component analysis plots are ideal for
detecting significantly up- or down-regulated genes
across a set of experiments. These methods do not
provide, though, an easy way of visualizing progres-
sion of gene expression over several experiments.
These types of questions usually come up in time
series experiments where, for instance, gene expres-
sion is measured every two hours. The important
question in this case is how gene expression pro-
gresses over the duration of the entire experiment.
The parallel coordinate planes plotting technique is
best suited to answer these types of questions. With
this method experiments are plotted on the x-axis
and expression values plotted on the y-axis. All
genes in a given experiment are plotted at the same
location on the x-axis , only their y location varies.
Another experiment is plotted at another x location
in the plane. Typically the progression of time
would be mapped into the x-axis by having higher
x values for experiments done at a later time or vice
versa. By connecting the expression values for the

same genes in the different experiments one can obtain a very intu-
itive way of depicting the progression of gene expression (Fig. 3).

Among other experiments showing changes in expression, pat-
tern during the cell’s life cycle can readily be visualized this way.
Not only does this type of display make it very easy to follow the
changes in expression level over time, but it could well be applied
to any other type of data as well. Due to the easy detection of
unusual expression patterns, this type of plot can also be used well
for outlier detection.

In addition, by applying different curve fitting techniques any
expression pattern over time could be searched for in the data. By

Figure 2. Principal Component Analysis on 600 genes across 21 experi-
ments. Gene scores are plotted on the first three principal components.
The gene pointed to by the arrow shows a possible outlier.

Figure 3. The Parallel Coordinate Plot displays the expression levels of
all genes across all experiments/files in the analysis. On the x-axis the
experiments or experimental files are plotted. The y-axis shows the
expression level of all genes across all experiments.
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adjusting the required closeness of fit the number of chosen
expression patterns could also be controlled.

CLUSTER ANALYSIS

Another frequently asked question related to microarrays is
finding groups of genes with similar expression profiles across a
number of experiments. The most often used multivariate tech-
nique to find these groups is cluster analysis. Essentially, this
method accomplishes the sorting of the data by grouping (cluster-
ing) genes with similar expression patterns closer to each other.
This technique can help establish functional groupings of genes or
predict the biochemical and physiological pathways of previously
uncharacterized genes. 

The clustering method that is most frequently used in the liter-
ature for finding groups in microarray data is hierarchical cluster-
ing (1). This method typically operates on a similarity or distance
measure of the data, such as: correlation, Euclidean, squared
Euclidean, or city-block (Manhattan) distance. In addition to cal-
culating the correlation or distance matrix, in most cases a linkage
rule also has to be specified to indicate how distance should be cal-
culated between groups and when groups are supposed to be
joined together. The most popular linkage rules are: single, com-
plete, or average linkage, or the centroid method. As an example,
in the average linkage method the distance between two clusters is

calculated as the average distance between all pairs of objects in
the two different clusters. As a result of the grouping process, a
tree of connectivity of observations emerges that can easily be visu-
alized as dendrograms. For gene expression data not only the
grouping of genes, but also the grouping of experiments, might be
important. When both are considered it becomes easy to simulta-
neously search for patterns in gene expression profiles and across
many different experimental conditions (Fig. 4).

Every colored block in the middle panel of Fig. 4 represents the
expression value of a gene in an experiment. The 600 genes are
plotted horizontally and the 21 experiments are plotted vertically.
The color-code is located in the lower-right corner. The dendro-
gram for genes is located just above the color-coded expression val-
ues with one arm connected to every gene in the study. The den-
drogram for experiments is on the left showing the grouping of
the 21 experiments in the study.

Although currently hierarchical clustering is an often employed
way of finding groupings in the data, other nonhierarchical (e.g.,
k-means) methods are likely to gain popularity in the future with
the rapidly growing amounts of data and the ever–increasing aver-
age experiment size. A common characteristic of nonhierarchical
approaches is to provide sufficient clustering without having to
create the full distance or similarity matrix, while minimizing the
number of scans of the whole dataset.

CLASSIFICATION

Although cluster analysis is currently by far the most frequent-
ly used multivariate technique to analyze gene expression data, we
have to emphasize that it is also the simplest such method.
Cluster analysis is typically employed when there is no apriori

knowledge about the data available. We
are at the very beginning of understand-
ing the gene interaction network of even
some of the simplest genomes, but it
would certainly be misleading to say that
nothing is known about the functionality
of genes in certain genomes. For exam-
ple, the MIPS Yeast Genome Database
classifies genes belonging to functional
classes such as: the tricarboxylic-acid
pathway, respiration chain complexes,
cytoplasmic ribosomes and many others
(5). Many of these functional categories
represent genes which are, on biological
grounds, expected to have similar expres-
sion profiles across a set of experiments
(1,4). One could of course apply the pre-
viously described clustering scheme to
group genes with similar expression pro-
files and from the known genes in each
group conclude which group represents
which biological functionality. With such
a procedure one might find that the clus-
tering actually came up with groups that
biologically make sense, but the opposite
is equally possibly. Depending on the

Figure 4. Color-coded gene expression values for 600
genes (horizontally) in 21 experiments (vertically).
Simultaneous clustering of genes and experiments is visu-
lazed by the top and left side dendrograms respectively.
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chosen algorithm, some of its parameters, or just due to charac-
teristics of the data, it is also possible that the found clustering
has no biological significance at all. In that sense clustering is a
somewhat ‘blind’ procedure, either producing some meaningful
grouping or not. It has been shown to work in certain cases and it
is certainly a useful tool for predicting functionality of previously
uncharacterized genes based on group membership, but it also has
its limitations.

A somewhat more directed way of grouping the data is classifi-
cation. In this method genes of known functionality serve as a
training sample to establish group characteristics. Unknown genes
are then classified into the already specified groups. Notice that in
this case, as opposed to clustering, we are guaranteed to end up
with a result that is at least biologically interpretable. At the end of
the classification process the unknown genes are classified into the
groups that were created based on the functional characteristics
and expressional profile of previously known genes. Therefore,
classification emerges as a more direct way of obtaining grouping
information in microarray data.

One has to empasize though that just as it was the case with
clustering, classification can also be achieved using many different
algorithms. Probably the simplest ways to classify data would be
with Linear Discriminant Analysis. This method derives a variate,
the linear combination of the independent variables (in our case
these would be the gene expression value scores for all experiments
in the study) that will discriminate best between a priori defined
groups. Discrimination is then achieved by setting the variate’s
weights for each variable to maximize the between-group variance
relative to the within-group variance. If the covariance matrices of
the groups are significantly different from each other then
Quadratic Discriminant Analysis might be a better choice for
analysis. If the distribution of the whole dataset is significantly dif-
ferent from the normal distribution and/or no obvious transforma-
tion could be found that would bring the distribution closer to
normal then nonparametric classification techniques should be
used. The most typical of these are the different kernel methods,
such as uniform, normal, biweight and triweight kernel method
and the k-nearest neighbor algorithm. A promising classification
technique from statistical learning theory is support vector
machines. Different versions of this algorithm are able to classify
huge amount of data with impressive speed and minimal memory
requirement, but without the often occurring problem of overfit-
ting the data (6).

COMPUTATIONAL MODELING

Currently cluster analysis is the most popular multivariate
technique that is used to find structure in microarray data. As
pointed out earlier it is not without limitations, but as probably
the simplest possible multivariate technique it has quickly gained
popularity. The authors predict that as the field matures we are
likely to see a shift in the direction of more sophisticated classifi-
cation methods appearing in the literature. Even though classifi-
cation is certainly a more direct way of finding structure in the
data than clustering, it still lacks the complexity that is required
to capture all the connectivity and interdependence among genes
in a genome. 

One should keep it in mind that probably the ultimate goal of
analyzing microarray data is at some point to discover how genes
are related and affect each other, and are dependent on one anoth-

er. Accordingly, the modeling device describing this interdepen-
dency has to have a matching level of complexity. There are not to
many modeling tools out there that fit these requirements. Some
of the possible candidates are: multilayer neural networks, systems
of partial differential equations and structural equation modeling.
At this point it would be too early and also hard to tell which one
or several of these and other methods will turn out to be the most
applicable modeling tool(s), but with the rapidly accumulating
expression data these techniques are bound to appear in the rela-
tively near future. Some early examples of applying neural net-
works to explain gene data (7), and mapping out the connectivity
pattern of smaller regulatory networks (8) are already available.

CONCLUSIONS

In this paper we provided an overview of the most popular data
analysis and visualization techniques used with microarray expres-
sion experiments. In our discussion we started out with the sim-
plest tools, such as the scatterplot, principal component analysis
and showing the data in parallel coordinate planes, gradually
working our way towards the more complex analysis methods,
such as the various forms of clustering and classification algo-
rithms, ending on a note about the future of computational mod-
els. The discussion should give the reader an overview of the cur-
rently used most popular analysis techniques as well as some
insight into what to expect in the near future.
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